1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use crate::{
    fenwick_tree,
    group_theory::{AbelianGroup, Commutative, Monoid},
};
pub struct FenwickTreeDual<S: Monoid<T> + Commutative<T>, T>
where
    T: crate::group_theory::BinaryOperationIdentifier,
{
    fenwick: fenwick_tree::FenwickTree<S, T>,
}

impl<S: Monoid<T> + Commutative<T>, T> FenwickTreeDual<S, T>
where
    T: crate::group_theory::BinaryOperationIdentifier,
{
    pub fn from_deltas(deltas: &[S]) -> Self
    where
        S: Clone,
    {
        Self {
            fenwick: fenwick_tree::FenwickTree::<S, T>::from(deltas),
        }
    }

    pub fn new(size: usize) -> Self
    where
        S: Clone,
    {
        Self::from_deltas(&vec![S::identity(); size].as_slice())
    }

    pub fn size(&self) -> usize { self.fenwick.size() }

    pub fn set_half_range(&mut self, left: usize, value_to_operate: &S) {
        assert!(left <= self.size());
        if left < self.size() {
            self.fenwick.set_point(left, value_to_operate)
        }
    }

    pub fn get_point(&self, array_index: usize) -> S {
        assert!(array_index < self.size());
        self.fenwick.get_half_range(array_index + 1)
    }

    /// find first index i satisfying
    /// `is_ok(&self.get_point(i)) == true`
    /// Constraints:
    /// `is_ok(&self.get_point(i))` must be monotonous [false,
    /// false, .., true, true] if such an i is not found,
    /// return `self.size()`
    pub fn binary_search<F>(&self, is_ok: &F) -> usize
    where
        F: Fn(&S) -> bool,
    {
        self.fenwick.find_max_right(&|prod: &S| !is_ok(prod))
    }
}

impl<S: AbelianGroup<T> + Clone, T> From<&[S]> for FenwickTreeDual<S, T>
where
    T: crate::group_theory::BinaryOperationIdentifier,
{
    fn from(slice: &[S]) -> Self {
        Self::from_deltas(
            slice
                .iter()
                .enumerate()
                .map(|(index, prod)| {
                    S::operate(
                        &(if index == 0 {
                            S::identity()
                        } else {
                            S::invert(&slice[index - 1])
                        }),
                        prod,
                    )
                })
                .collect::<Vec<_>>()
                .as_slice(),
        )
    }
}

impl<S: AbelianGroup<T>, T> FenwickTreeDual<S, T>
where
    T: crate::group_theory::BinaryOperationIdentifier,
{
    pub fn set_range(&mut self, left: usize, right: usize, value_to_operate: &S) {
        assert!(left <= right && right <= self.size());
        if left < self.size() {
            self.set_half_range(left, value_to_operate);
        }
        if right < self.size() {
            self.set_half_range(right, &S::invert(value_to_operate));
        }
    }

    /// prod[left, index) >= target_value - prod[0, left)
    /// prod[left, index) + prod[0, left) >= target_value
    /// is_ok(G::operate(prod[left, index), prod[0, left)))
    /// `is_ok`'s results must be mnotonous
    /// in the range of [left, self.size())
    /// [?, .., ?, false(left), .., false, true .., true]
    /// where first false index corresponds
    /// to the given left, it might be there exists no
    /// false.
    pub fn binary_search_from_left<F>(&self, is_ok: &F, left: usize) -> usize
    where
        F: Fn(&S) -> bool,
    {
        assert!(left <= self.size());
        let prod_less_than_left = if left == 0 {
            S::identity()
        } else {
            self.get_point(left - 1)
        };
        self.fenwick.find_max_right_with_left(
            &|prod: &S| !is_ok(&S::operate(&prod_less_than_left, prod)),
            left,
        )
    }

    // /// [false, .. false, true, .., true, ?, .. ?]
    // /// find first true index.
    // /// no longer necessary function.
    // pub fn binary_search_from_right<F>(&self, is_ok: &F, right:
    // usize) -> usize where
    //     F: Fn(&S) -> bool,
    // {
    //     assert!(right <= self.size());
    // }
}

#[cfg(test)]
mod tests {

    #[test]
    fn test_as_abelian_group() {
        use crate::group_theory::Additive;
        let deltas = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let mut fw = super::FenwickTreeDual::<i32, Additive>::from_deltas(&deltas);
        assert_eq!(fw.get_point(1), 1);
        assert_eq!(fw.get_point(5), 15);
        assert_eq!(fw.get_point(9), 45);
        fw.set_half_range(5, &2);
        assert_eq!(fw.get_point(1), 1);
        assert_eq!(fw.get_point(5), 17);
        assert_eq!(fw.get_point(9), 47);
        assert_eq!(fw.binary_search(&|value: &i32| *value >= 23), 6);
        assert_eq!(fw.binary_search(&|value: &i32| *value >= 47), 9);
        assert_eq!(fw.binary_search(&|value: &i32| *value > 47), 10);

        // abelian group
        let mut arr = deltas;
        arr.iter_mut().fold(0, |acc, x| {
            *x += acc;
            *x
        });
        let mut fw = super::FenwickTreeDual::<i32, Additive>::from(arr.as_slice());
        assert_eq!(fw.get_point(1), 1);
        assert_eq!(fw.get_point(5), 15);
        assert_eq!(fw.get_point(9), 45);
        fw.set_half_range(5, &2);
        assert_eq!(fw.get_point(1), 1);
        assert_eq!(fw.get_point(5), 17);
        assert_eq!(fw.get_point(9), 47);
        assert_eq!(fw.binary_search(&|value: &i32| *value >= 23), 6);
        assert_eq!(fw.binary_search(&|value: &i32| *value >= 47), 9);
        assert_eq!(fw.binary_search(&|value: &i32| *value > 47), 10);
        fw.set_range(2, 6, &1);
        assert_eq!(fw.get_point(1), 1);
        assert_eq!(fw.get_point(5), 18);
        assert_eq!(fw.get_point(9), 47);
        fw.set_range(2, 6, &-1);
        assert_eq!(fw.binary_search_from_left(&|value: &i32| *value >= 23, 0), 6);
        assert_eq!(fw.binary_search_from_left(&|value: &i32| *value >= 47, 0), 9);
        assert_eq!(fw.binary_search_from_left(&|value: &i32| *value > 47, 0), 10);

        // [0, 1, 3, 6, 10, 17, 23, 30, 38, 47]
        assert_eq!(fw.binary_search_from_left(&|value: &i32| *value >= 23, 7), 7);
        assert_eq!(fw.binary_search_from_left(&|value: &i32| *value >= 23, 5), 6);
    }
}