dryoc 0.7.0

Don't Roll Your Own Crypto: pure-Rust, hard to misuse cryptography library
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
//! # Public/secret keypair tools
//!
//! Provides an implementation for handling public/private keypairs based on
//! libsodium's crypto_box, which uses X25519.
//!
//! Refer to the [protected] mod for details on usage with protected memory.

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use subtle::ConstantTimeEq;
use zeroize::{Zeroize, ZeroizeOnDrop};

use crate::classic::crypto_box::crypto_box_seed_keypair_inplace;
use crate::constants::{
    CRYPTO_BOX_BEFORENMBYTES, CRYPTO_BOX_PUBLICKEYBYTES, CRYPTO_BOX_SECRETKEYBYTES,
    CRYPTO_KX_SESSIONKEYBYTES,
};
use crate::error::Error;
use crate::kx;
use crate::precalc::PrecalcSecretKey;
use crate::types::*;

/// Stack-allocated public key type alias.
pub type PublicKey = StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>;
/// Stack-allocated secret key type alias.
pub type SecretKey = StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>;
/// Stack-allocated key pair type alias.
pub type StackKeyPair = KeyPair<PublicKey, SecretKey>;

#[cfg_attr(
    feature = "serde",
    derive(Zeroize, ZeroizeOnDrop, Serialize, Deserialize, Debug, Clone)
)]
#[cfg_attr(not(feature = "serde"), derive(Zeroize, ZeroizeOnDrop, Debug, Clone))]
/// Public/private keypair for use with [`crate::dryocbox::DryocBox`], aka
/// libsodium box
pub struct KeyPair<
    PublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + Zeroize,
    SecretKey: ByteArray<CRYPTO_BOX_SECRETKEYBYTES> + Zeroize,
> {
    /// Public key
    pub public_key: PublicKey,
    /// Secret key
    pub secret_key: SecretKey,
}

impl<
    PublicKey: NewByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + Zeroize,
    SecretKey: NewByteArray<CRYPTO_BOX_SECRETKEYBYTES> + Zeroize,
> KeyPair<PublicKey, SecretKey>
{
    /// Creates a new, empty keypair.
    pub fn new() -> Self {
        Self {
            public_key: PublicKey::new_byte_array(),
            secret_key: SecretKey::new_byte_array(),
        }
    }

    /// Generates a random keypair.
    pub fn gen() -> Self {
        use crate::classic::crypto_box::crypto_box_keypair_inplace;

        let mut public_key = PublicKey::new_byte_array();
        let mut secret_key = SecretKey::new_byte_array();
        crypto_box_keypair_inplace(public_key.as_mut_array(), secret_key.as_mut_array());

        Self {
            public_key,
            secret_key,
        }
    }

    /// Derives a keypair from `secret_key`, and consumes it, and returns a new
    /// keypair.
    pub fn from_secret_key(secret_key: SecretKey) -> Self {
        use crate::classic::crypto_core::crypto_scalarmult_base;

        let mut public_key = PublicKey::new_byte_array();
        crypto_scalarmult_base(public_key.as_mut_array(), secret_key.as_array());

        Self {
            public_key,
            secret_key,
        }
    }

    /// Derives a keypair from `seed`, returning
    /// a new keypair.
    pub fn from_seed<Seed: Bytes>(seed: &Seed) -> Self {
        let mut public_key = PublicKey::new_byte_array();
        let mut secret_key = SecretKey::new_byte_array();

        crypto_box_seed_keypair_inplace(
            public_key.as_mut_array(),
            secret_key.as_mut_array(),
            seed.as_slice(),
        );

        Self {
            public_key,
            secret_key,
        }
    }
}

impl KeyPair<StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>, StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>> {
    /// Randomly generates a new keypair, using default types
    /// (stack-allocated byte arrays). Provided for convenience.
    pub fn gen_with_defaults() -> Self {
        Self::gen()
    }
}

impl<
    'a,
    PublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + std::convert::TryFrom<&'a [u8]> + Zeroize,
    SecretKey: ByteArray<CRYPTO_BOX_SECRETKEYBYTES> + std::convert::TryFrom<&'a [u8]> + Zeroize,
> KeyPair<PublicKey, SecretKey>
{
    /// Constructs a new keypair from key slices, consuming them. Does not check
    /// validity or authenticity of keypair.
    pub fn from_slices(public_key: &'a [u8], secret_key: &'a [u8]) -> Result<Self, Error> {
        Ok(Self {
            public_key: PublicKey::try_from(public_key)
                .map_err(|_e| dryoc_error!("invalid public key"))?,
            secret_key: SecretKey::try_from(secret_key)
                .map_err(|_e| dryoc_error!("invalid secret key"))?,
        })
    }
}

impl<
    PublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + Zeroize,
    SecretKey: ByteArray<CRYPTO_BOX_SECRETKEYBYTES> + Zeroize,
> KeyPair<PublicKey, SecretKey>
{
    /// Checks if the given public key is valid according to X25519 rules.
    ///
    /// For X25519 ([`crypto_box`](`crate::classic::crypto_box`),
    /// [`DryocBox`](`crate::dryocbox::DryocBox`)), a public key is considered
    /// valid if:
    /// - It is not the all-zero point `[0, ..., 0]`.
    /// - The high bit of the last byte is 0.
    ///
    /// This function verifies these conditions.
    ///
    /// **Note:** This validation is specific to X25519 keys used in
    /// Diffie-Hellman key exchange (`crypto_box`). It primarily aims to
    /// exclude degenerate keys and does **not** explicitly verify that the
    /// point lies on the underlying curve, unlike stricter Ed25519 point
    /// validation (see
    /// [`crypto_core_ed25519_is_valid_point`](`crate::classic::crypto_core::crypto_core_ed25519_is_valid_point`)).
    ///
    /// ## Validating Protected Keys
    ///
    /// You can validate keys stored in protected memory directly, as the
    /// validation functions operate on references.
    ///
    /// ```
    /// # #![cfg_attr(not(feature = "nightly"), ignore)]
    /// # #[cfg(feature = "nightly")]
    /// # {
    /// use dryoc::constants::{CRYPTO_BOX_PUBLICKEYBYTES, CRYPTO_BOX_SECRETKEYBYTES};
    /// use dryoc::keypair::protected::{HeapByteArray, LockedRO};
    /// use dryoc::keypair::{KeyPair, PublicKey, SecretKey};
    ///
    /// // Generate a keypair stored in locked, read-only memory
    /// let protected_kp: KeyPair<
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>,
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_SECRETKEYBYTES>>,
    /// > = KeyPair::gen_readonly_locked_keypair().expect("Failed to generate locked keypair");
    ///
    /// // Validate the Ed25519 public key using the relaxed rules appropriate for
    /// // keys generated by crypto_sign_keypair (even though this is an X25519 keypair,
    /// // the validation function itself can be called).
    /// // Note: For an actual Ed25519 keypair from crypto_sign, you'd use the
    /// // crypto_core_ed25519_is_valid_point_relaxed function directly.
    /// // Here we demonstrate calling the KeyPair method.
    /// let is_valid = KeyPair::<
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>,
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_SECRETKEYBYTES>>,
    /// >::is_valid_ed25519_key(&protected_kp.public_key);
    ///
    /// // For keys generated by crypto_sign_keypair, relaxed validation should pass.
    /// // (This assertion might depend on the specific key generation details,
    /// // but illustrates the call)
    /// // assert!(is_valid, "Protected key should be valid (relaxed check)");
    ///
    /// // Similarly, validate the X25519 public key
    /// let is_x25519_valid = KeyPair::<
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>,
    ///     LockedRO<HeapByteArray<CRYPTO_BOX_SECRETKEYBYTES>>,
    /// >::is_valid_public_key(&protected_kp.public_key);
    ///
    /// assert!(is_x25519_valid, "Protected X25519 key should be valid");
    /// # }
    /// ```
    pub fn is_valid_public_key<PK: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>(key: &PK) -> bool {
        const ZERO_POINT: [u8; CRYPTO_BOX_PUBLICKEYBYTES] = [0u8; CRYPTO_BOX_PUBLICKEYBYTES];
        let key_array = key.as_array();

        // Check 1: Not the all-zero point
        if key_array == &ZERO_POINT {
            return false;
        }

        // Check 2: High bit of the last byte must be 0
        // Although clamping during generation usually ensures this, we check it.
        if key_array[CRYPTO_BOX_PUBLICKEYBYTES - 1] & 0x80 != 0 {
            return false;
        }

        // If both checks pass, it's considered a valid X25519 public key
        // representation.
        true
    }

    /// Checks if the given key is a valid Ed25519 public key, using relaxed
    /// validation rules that allow the high bit to be set.
    ///
    /// For Ed25519 public keys, generated by `crypto_sign_keypair()`, we need
    /// to use more permissive validation since these keys can have the high
    /// bit set.
    ///
    /// This method should be used for validating Ed25519 keys (used in
    /// signatures), while `is_valid_public_key` should be used for X25519
    /// keys (used in crypto_box).
    pub fn is_valid_ed25519_key<PK: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>(key: &PK) -> bool {
        crate::classic::crypto_core::crypto_core_ed25519_is_valid_point_relaxed(key.as_array())
    }

    /// Creates new client session keys using this keypair and
    /// `server_public_key`, assuming this keypair is for the client.
    pub fn kx_new_client_session<SessionKey: NewByteArray<CRYPTO_KX_SESSIONKEYBYTES> + Zeroize>(
        &self,
        server_public_key: &PublicKey,
    ) -> Result<kx::Session<SessionKey>, Error> {
        kx::Session::new_client(self, server_public_key)
    }

    /// Creates new server session keys using this keypair and
    /// `client_public_key`, assuming this keypair is for the server.
    pub fn kx_new_server_session<SessionKey: NewByteArray<CRYPTO_KX_SESSIONKEYBYTES> + Zeroize>(
        &self,
        client_public_key: &PublicKey,
    ) -> Result<kx::Session<SessionKey>, Error> {
        kx::Session::new_server(self, client_public_key)
    }

    /// Computes a stack-allocated shared secret key using a secret key from
    /// this keypair and `third_party_public_key`.
    ///
    /// Compatible with libsodium's `crypto_box_beforenm`.
    #[inline]
    pub fn precalculate(
        &self,
        third_party_public_key: &PublicKey,
    ) -> PrecalcSecretKey<StackByteArray<CRYPTO_BOX_BEFORENMBYTES>> {
        PrecalcSecretKey::precalculate(third_party_public_key, &self.secret_key)
    }
}

impl<
    PublicKey: NewByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + Zeroize,
    SecretKey: NewByteArray<CRYPTO_BOX_SECRETKEYBYTES> + Zeroize,
> Default for KeyPair<PublicKey, SecretKey>
{
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(any(feature = "nightly", all(doc, not(doctest))))]
#[cfg_attr(all(feature = "nightly", doc), doc(cfg(feature = "nightly")))]
pub mod protected {
    //! #  Protected memory for [`KeyPair`]
    use super::*;
    use crate::classic::crypto_box::crypto_box_keypair_inplace;
    pub use crate::protected::*;

    impl
        KeyPair<
            Locked<HeapByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>,
            Locked<HeapByteArray<CRYPTO_BOX_SECRETKEYBYTES>>,
        >
    {
        /// Returns a new locked keypair.
        pub fn new_locked_keypair() -> Result<Self, std::io::Error> {
            Ok(Self {
                public_key: HeapByteArray::<CRYPTO_BOX_PUBLICKEYBYTES>::new_locked()?,
                secret_key: HeapByteArray::<CRYPTO_BOX_SECRETKEYBYTES>::new_locked()?,
            })
        }

        /// Returns a new randomly generated locked keypair.
        pub fn gen_locked_keypair() -> Result<Self, std::io::Error> {
            let mut res = Self::new_locked_keypair()?;

            crypto_box_keypair_inplace(
                res.public_key.as_mut_array(),
                res.secret_key.as_mut_array(),
            );

            Ok(res)
        }

        /// Computes a heap-allocated, page-aligned, locked shared secret key
        /// using a secret key from this keypair and
        /// `third_party_public_key`.
        ///
        /// Compatible with libsodium's `crypto_box_beforenm`.
        #[inline]
        pub fn precalculate_locked<OtherPublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>(
            &self,
            third_party_public_key: &OtherPublicKey,
        ) -> Result<PrecalcSecretKey<Locked<HeapByteArray<CRYPTO_BOX_BEFORENMBYTES>>>, std::io::Error>
        {
            PrecalcSecretKey::precalculate_locked(third_party_public_key, &self.secret_key)
        }
    }

    impl
        KeyPair<
            LockedRO<HeapByteArray<CRYPTO_BOX_PUBLICKEYBYTES>>,
            LockedRO<HeapByteArray<CRYPTO_BOX_SECRETKEYBYTES>>,
        >
    {
        /// Returns a new randomly generated locked, read-only keypair.
        pub fn gen_readonly_locked_keypair() -> Result<Self, std::io::Error> {
            let mut public_key = HeapByteArray::<CRYPTO_BOX_PUBLICKEYBYTES>::new_locked()?;
            let mut secret_key = HeapByteArray::<CRYPTO_BOX_SECRETKEYBYTES>::new_locked()?;

            crypto_box_keypair_inplace(public_key.as_mut_array(), secret_key.as_mut_array());

            let public_key = public_key.mprotect_readonly()?;
            let secret_key = secret_key.mprotect_readonly()?;

            Ok(Self {
                public_key,
                secret_key,
            })
        }

        /// Computes a heap-allocated, page-aligned, locked, read-only shared
        /// secret key using a secret key from this keypair and
        /// `third_party_public_key`.
        ///
        /// Compatible with libsodium's `crypto_box_beforenm`.
        #[inline]
        pub fn precalculate_readonly_locked<
            OtherPublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES>,
        >(
            &self,
            third_party_public_key: &OtherPublicKey,
        ) -> Result<
            PrecalcSecretKey<LockedRO<HeapByteArray<CRYPTO_BOX_BEFORENMBYTES>>>,
            std::io::Error,
        > {
            PrecalcSecretKey::precalculate_readonly_locked(third_party_public_key, &self.secret_key)
        }
    }
}

impl<
    PublicKey: ByteArray<CRYPTO_BOX_PUBLICKEYBYTES> + Zeroize,
    SecretKey: ByteArray<CRYPTO_BOX_SECRETKEYBYTES> + Zeroize,
> PartialEq<KeyPair<PublicKey, SecretKey>> for KeyPair<PublicKey, SecretKey>
{
    fn eq(&self, other: &Self) -> bool {
        self.public_key
            .as_slice()
            .ct_eq(other.public_key.as_slice())
            .unwrap_u8()
            == 1
            && self
                .secret_key
                .as_slice()
                .ct_eq(other.secret_key.as_slice())
                .unwrap_u8()
                == 1
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::kx::Session;

    fn all_eq<T>(t: &[T], v: T) -> bool
    where
        T: PartialEq,
    {
        t.iter().all(|x| *x == v)
    }

    #[test]
    fn test_new() {
        let keypair = KeyPair::<
            StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>,
            StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>,
        >::new();

        assert!(all_eq(&keypair.public_key, 0));
        assert!(all_eq(&keypair.secret_key, 0));
    }

    #[test]
    fn test_default() {
        let keypair = KeyPair::<
            StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>,
            StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>,
        >::default();

        assert!(all_eq(&keypair.public_key, 0));
        assert!(all_eq(&keypair.secret_key, 0));
    }

    #[test]
    fn test_gen_keypair() {
        use sodiumoxide::crypto::scalarmult::curve25519::{Scalar, scalarmult_base};

        use crate::classic::crypto_core::crypto_scalarmult_base;

        let keypair = KeyPair::<
            StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>,
            StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>,
        >::gen();

        let mut public_key = [0u8; CRYPTO_BOX_PUBLICKEYBYTES];
        crypto_scalarmult_base(&mut public_key, keypair.secret_key.as_array());

        assert_eq!(keypair.public_key.as_array(), &public_key);

        let ge = scalarmult_base(&Scalar::from_slice(&keypair.secret_key).unwrap());

        assert_eq!(ge.as_ref(), public_key);
    }

    #[test]
    fn test_from_secret_key() {
        let keypair_1 = KeyPair::<
            StackByteArray<CRYPTO_BOX_PUBLICKEYBYTES>,
            StackByteArray<CRYPTO_BOX_SECRETKEYBYTES>,
        >::gen();
        let keypair_2 = KeyPair::from_secret_key(keypair_1.secret_key.clone());

        assert_eq!(keypair_1.public_key, keypair_2.public_key);
    }

    #[test]
    fn test_keypair_precalculate() {
        let kp1 = KeyPair::gen_with_defaults();
        let kp2 = KeyPair::gen_with_defaults();
        let precalc = kp1.precalculate(&kp2.public_key);
        assert_eq!(precalc.len(), crate::constants::CRYPTO_BOX_BEFORENMBYTES);
    }

    #[cfg(feature = "nightly")]
    #[test]
    fn test_keypair_precalculate_locked() {
        use crate::keypair::protected::*;
        let kp1 = KeyPair::gen_locked_keypair().unwrap();
        let kp2 = KeyPair::gen_locked_keypair().unwrap();
        let precalc = kp1.precalculate_locked(&kp2.public_key).unwrap();
        assert_eq!(precalc.len(), crate::constants::CRYPTO_BOX_BEFORENMBYTES);
    }

    #[test]
    fn test_keypair_kx_new_client_session() {
        let server_kp = KeyPair::gen_with_defaults();
        let client_kp = KeyPair::gen_with_defaults();
        let session: Session<StackByteArray<CRYPTO_KX_SESSIONKEYBYTES>> = client_kp
            .kx_new_client_session(&server_kp.public_key)
            .unwrap();
        assert_eq!(
            session.rx_as_slice().len(),
            crate::constants::CRYPTO_KX_SESSIONKEYBYTES
        );
        assert_eq!(
            session.tx_as_slice().len(),
            crate::constants::CRYPTO_KX_SESSIONKEYBYTES
        );
    }

    #[test]
    fn test_keypair_kx_new_server_session() {
        let client_kp = KeyPair::gen_with_defaults();
        let server_kp = KeyPair::gen_with_defaults();
        let session: Session<StackByteArray<CRYPTO_KX_SESSIONKEYBYTES>> = server_kp
            .kx_new_server_session(&client_kp.public_key)
            .unwrap();
        assert_eq!(
            session.rx_as_slice().len(),
            crate::constants::CRYPTO_KX_SESSIONKEYBYTES
        );
        assert_eq!(
            session.tx_as_slice().len(),
            crate::constants::CRYPTO_KX_SESSIONKEYBYTES
        );
    }

    #[test]
    fn test_keypair_from_seed() {
        let seed = [42u8; 32];
        let kp: StackKeyPair = KeyPair::from_seed(&seed);
        assert!(!kp.public_key.iter().all(|x| *x == 0));
    }

    #[test]
    fn test_keypair_gen_with_defaults() {
        let kp = KeyPair::gen_with_defaults();
        assert!(!kp.public_key.iter().all(|x| *x == 0));
    }

    #[test]
    fn test_is_valid_public_key() {
        // Known valid key (assuming it meets X25519 criteria)
        // This specific key is also a valid Ed25519 key.
        let valid_pk_bytes = [
            215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58, 14, 225, 114,
            243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26,
        ];
        let valid_pk = PublicKey::from(valid_pk_bytes);
        assert!(
            KeyPair::<PublicKey, SecretKey>::is_valid_public_key(&valid_pk),
            "Known valid key failed validation"
        );

        // Invalid: High bit set
        let mut invalid_high_bit_bytes = [0u8; CRYPTO_BOX_PUBLICKEYBYTES];
        invalid_high_bit_bytes[31] = 0x80;
        let invalid_high_bit = PublicKey::from(invalid_high_bit_bytes);
        assert!(
            !KeyPair::<PublicKey, SecretKey>::is_valid_public_key(&invalid_high_bit),
            "Key with high bit set should be invalid"
        );

        // Invalid: Zero point
        let zero_bytes = [0u8; CRYPTO_BOX_PUBLICKEYBYTES];
        let zero_pk = PublicKey::from(zero_bytes);
        assert!(
            !KeyPair::<PublicKey, SecretKey>::is_valid_public_key(&zero_pk),
            "Zero key should be invalid"
        );

        // The identity point [1, 0, ..., 0] is NOT necessarily invalid for X25519,
        // unlike Ed25519 validation. We don't explicitly test its rejection here.

        // Generated key should be valid
        let kp = KeyPair::gen_with_defaults();
        assert!(
            KeyPair::<PublicKey, SecretKey>::is_valid_public_key(&kp.public_key),
            "Generated key failed validation"
        );
    }

    #[test]
    fn test_is_valid_ed25519_key() {
        // Get a key from crypto_sign_keypair which may have high bit set
        let (valid_pk, _) = crate::classic::crypto_sign::crypto_sign_keypair();

        // Should pass relaxed validation
        assert!(
            KeyPair::<PublicKey, SecretKey>::is_valid_ed25519_key(&valid_pk),
            "Ed25519 key from crypto_sign_keypair should pass relaxed validation"
        );

        // Keys that are invalid with any validation

        // Invalid: all zeros
        let zero_bytes = [0u8; CRYPTO_BOX_PUBLICKEYBYTES];
        let zero_pk = PublicKey::from(zero_bytes);
        assert!(
            !KeyPair::<PublicKey, SecretKey>::is_valid_ed25519_key(&zero_pk),
            "Zero key should be invalid even with relaxed validation"
        );

        // Test the identity element (small-order point)
        let identity_bytes = [
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0,
        ];
        let identity_pk = PublicKey::from(identity_bytes);
        assert!(
            !KeyPair::<PublicKey, SecretKey>::is_valid_ed25519_key(&identity_pk),
            "Identity element (small order point) should be invalid even with relaxed validation"
        );
    }
}