dioxus-core 0.3.1

Core functionality for Dioxus - a concurrent renderer-agnostic Virtual DOM for interactive user experiences
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
use crate::{
    any_props::AnyProps,
    arena::ElementId,
    innerlude::{BorrowedAttributeValue, DirtyScope, VComponent, VPlaceholder, VText},
    mutations::Mutation,
    nodes::RenderReturn,
    nodes::{DynamicNode, VNode},
    scopes::ScopeId,
    virtual_dom::VirtualDom,
    Attribute, AttributeValue, TemplateNode,
};

use rustc_hash::{FxHashMap, FxHashSet};
use DynamicNode::*;

impl<'b> VirtualDom {
    pub(super) fn diff_scope(&mut self, scope: ScopeId) {
        let scope_state = &mut self.scopes[scope];

        self.scope_stack.push(scope);
        unsafe {
            // Load the old and new bump arenas
            let old = scope_state
                .previous_frame()
                .try_load_node()
                .expect("Call rebuild before diffing");

            let new = scope_state
                .current_frame()
                .try_load_node()
                .expect("Call rebuild before diffing");

            use RenderReturn::{Aborted, Pending, Ready};

            match (old, new) {
                // Normal pathway
                (Ready(l), Ready(r)) => self.diff_node(l, r),

                // Unwind the mutations if need be
                (Ready(l), Aborted(p)) => self.diff_ok_to_err(l, p),

                // Just move over the placeholder
                (Aborted(l), Aborted(r)) => r.id.set(l.id.get()),

                // Becomes async, do nothing while we wait
                (Ready(_nodes), Pending(_fut)) => self.diff_ok_to_async(_nodes, scope),

                // Placeholder becomes something
                // We should also clear the error now
                (Aborted(l), Ready(r)) => self.replace_placeholder(l, [r]),

                (Aborted(_), Pending(_)) => todo!("async should not resolve here"),
                (Pending(_), Ready(_)) => todo!("async should not resolve here"),
                (Pending(_), Aborted(_)) => todo!("async should not resolve here"),
                (Pending(_), Pending(_)) => {
                    // All suspense should resolve before we diff it again
                    panic!("Should not roll from suspense to suspense.");
                }
            };
        }
        self.scope_stack.pop();
    }

    fn diff_ok_to_async(&mut self, _new: &'b VNode<'b>, _scope: ScopeId) {
        //
    }

    fn diff_ok_to_err(&mut self, l: &'b VNode<'b>, p: &'b VPlaceholder) {
        let id = self.next_null();
        p.id.set(Some(id));
        self.mutations.push(Mutation::CreatePlaceholder { id });

        let pre_edits = self.mutations.edits.len();

        self.remove_node(l, true);

        // We should always have a remove mutation
        // Eventually we don't want to generate placeholders, so this might not be true. But it's true today
        assert!(self.mutations.edits.len() > pre_edits);

        // We want to optimize the replace case to use one less mutation if possible
        // Since mutations are done in reverse, the last node removed will be the first in the stack
        // Instead of *just* removing it, we can use the replace mutation
        match self.mutations.edits.pop().unwrap() {
            Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m: 1 }),
            _ => panic!("Expected remove mutation from remove_node"),
        };
    }

    fn diff_node(&mut self, left_template: &'b VNode<'b>, right_template: &'b VNode<'b>) {
        // If hot reloading is enabled, we need to make sure we're using the latest template
        #[cfg(debug_assertions)]
        {
            let (path, byte_index) = right_template.template.get().name.rsplit_once(':').unwrap();
            if let Some(map) = self.templates.get(path) {
                let byte_index = byte_index.parse::<usize>().unwrap();
                if let Some(&template) = map.get(&byte_index) {
                    right_template.template.set(template);
                    if template != left_template.template.get() {
                        return self.replace(left_template, [right_template]);
                    }
                }
            }
        }

        // If the templates are the same, we don't need to do anything, nor do we want to
        if templates_are_the_same(left_template, right_template) {
            return;
        }

        // If the templates are different by name, we need to replace the entire template
        if templates_are_different(left_template, right_template) {
            return self.light_diff_templates(left_template, right_template);
        }

        // If the templates are the same, we can diff the attributes and children
        // Start with the attributes
        left_template
            .dynamic_attrs
            .iter()
            .zip(right_template.dynamic_attrs.iter())
            .for_each(|(left_attr, right_attr)| {
                // Move over the ID from the old to the new
                right_attr
                    .mounted_element
                    .set(left_attr.mounted_element.get());

                // We want to make sure anything listener that gets pulled is valid
                if let AttributeValue::Listener(_) = right_attr.value {
                    self.update_template(left_attr.mounted_element.get(), right_template);
                }

                // If the attributes are different (or volatile), we need to update them
                if left_attr.value != right_attr.value || left_attr.volatile {
                    self.update_attribute(right_attr, left_attr);
                }
            });

        // Now diff the dynamic nodes
        left_template
            .dynamic_nodes
            .iter()
            .zip(right_template.dynamic_nodes.iter())
            .enumerate()
            .for_each(|(idx, (left_node, right_node))| {
                self.diff_dynamic_node(left_node, right_node, right_template, idx);
            });

        // Make sure the roots get transferred over while we're here
        right_template.root_ids.transfer(&left_template.root_ids);
    }

    fn diff_dynamic_node(
        &mut self,
        left_node: &'b DynamicNode<'b>,
        right_node: &'b DynamicNode<'b>,
        node: &'b VNode<'b>,
        idx: usize,
    ) {
        match (left_node, right_node) {
            (Text(left), Text(right)) => self.diff_vtext(left, right, node),
            (Fragment(left), Fragment(right)) => self.diff_non_empty_fragment(left, right),
            (Placeholder(left), Placeholder(right)) => right.id.set(left.id.get()),
            (Component(left), Component(right)) => self.diff_vcomponent(left, right, node, idx),
            (Placeholder(left), Fragment(right)) => self.replace_placeholder(left, *right),
            (Fragment(left), Placeholder(right)) => self.node_to_placeholder(left, right),
            _ => todo!("This is an usual custom case for dynamic nodes. We don't know how to handle it yet."),
        };
    }

    fn update_attribute(&mut self, right_attr: &'b Attribute<'b>, left_attr: &'b Attribute) {
        let name = unsafe { std::mem::transmute(left_attr.name) };
        let value: BorrowedAttributeValue<'b> = (&right_attr.value).into();
        let value = unsafe { std::mem::transmute(value) };
        self.mutations.push(Mutation::SetAttribute {
            id: left_attr.mounted_element.get(),
            ns: right_attr.namespace,
            name,
            value,
        });
    }

    fn diff_vcomponent(
        &mut self,
        left: &'b VComponent<'b>,
        right: &'b VComponent<'b>,
        right_template: &'b VNode<'b>,
        idx: usize,
    ) {
        if std::ptr::eq(left, right) {
            return;
        }

        // Replace components that have different render fns
        if left.render_fn != right.render_fn {
            return self.replace_vcomponent(right_template, right, idx, left);
        }

        // Make sure the new vcomponent has the right scopeid associated to it
        let scope_id = left.scope.get().unwrap();

        right.scope.set(Some(scope_id));

        // copy out the box for both
        let old = self.scopes[scope_id].props.as_ref();
        let new: Box<dyn AnyProps> = right.props.take().unwrap();
        let new: Box<dyn AnyProps> = unsafe { std::mem::transmute(new) };

        // If the props are static, then we try to memoize by setting the new with the old
        // The target scopestate still has the reference to the old props, so there's no need to update anything
        // This also implicitly drops the new props since they're not used
        if left.static_props && unsafe { old.as_ref().unwrap().memoize(new.as_ref()) } {
            return;
        }

        // First, move over the props from the old to the new, dropping old props in the process
        self.scopes[scope_id].props = Some(new);

        // Now run the component and diff it
        self.run_scope(scope_id);
        self.diff_scope(scope_id);

        self.dirty_scopes.remove(&DirtyScope {
            height: self.scopes[scope_id].height,
            id: scope_id,
        });
    }

    fn replace_vcomponent(
        &mut self,
        right_template: &'b VNode<'b>,
        right: &'b VComponent<'b>,
        idx: usize,
        left: &'b VComponent<'b>,
    ) {
        let m = self.create_component_node(right_template, right, idx);

        let pre_edits = self.mutations.edits.len();

        self.remove_component_node(left, true);

        assert!(self.mutations.edits.len() > pre_edits);

        // We want to optimize the replace case to use one less mutation if possible
        // Since mutations are done in reverse, the last node removed will be the first in the stack
        // Instead of *just* removing it, we can use the replace mutation
        match self.mutations.edits.pop().unwrap() {
            Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m }),
            at => panic!("Expected remove mutation from remove_node {:#?}", at),
        };
    }

    /// Lightly diff the two templates, checking only their roots.
    ///
    /// The goal here is to preserve any existing component state that might exist. This is to preserve some React-like
    /// behavior where the component state is preserved when the component is re-rendered.
    ///
    /// This is implemented by iterating each root, checking if the component is the same, if it is, then diff it.
    ///
    /// We then pass the new template through "create" which should be smart enough to skip roots.
    ///
    /// Currently, we only handle the case where the roots are the same component list. If there's any sort of deviation,
    /// IE more nodes, less nodes, different nodes, or expressions, then we just replace the whole thing.
    ///
    /// This is mostly implemented to help solve the issue where the same component is rendered under two different
    /// conditions:
    ///
    /// ```rust, ignore
    /// if enabled {
    ///     rsx!{ Component { enabled_sign: "abc" } }
    /// } else {
    ///     rsx!{ Component { enabled_sign: "xyz" } }
    /// }
    /// ```
    ///
    /// However, we should not that it's explicit in the docs that this is not a guarantee. If you need to preserve state,
    /// then you should be passing in separate props instead.
    ///
    /// ```rust, ignore
    /// let props = if enabled {
    ///     ComponentProps { enabled_sign: "abc" }
    /// } else {
    ///     ComponentProps { enabled_sign: "xyz" }
    /// };
    ///
    /// rsx! {
    ///     Component { ..props }
    /// }
    /// ```
    fn light_diff_templates(&mut self, left: &'b VNode<'b>, right: &'b VNode<'b>) {
        match matching_components(left, right) {
            None => self.replace(left, [right]),
            Some(components) => components
                .into_iter()
                .enumerate()
                .for_each(|(idx, (l, r))| self.diff_vcomponent(l, r, right, idx)),
        }
    }

    /// Diff the two text nodes
    ///
    /// This just moves the ID of the old node over to the new node, and then sets the text of the new node if it's
    /// different.
    fn diff_vtext(&mut self, left: &'b VText<'b>, right: &'b VText<'b>, node: &'b VNode<'b>) {
        let id = left
            .id
            .get()
            .unwrap_or_else(|| self.next_element(node, &[0]));

        right.id.set(Some(id));
        if left.value != right.value {
            let value = unsafe { std::mem::transmute(right.value) };
            self.mutations.push(Mutation::SetText { id, value });
        }
    }

    fn diff_non_empty_fragment(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
        let new_is_keyed = new[0].key.is_some();
        let old_is_keyed = old[0].key.is_some();
        debug_assert!(
            new.iter().all(|n| n.key.is_some() == new_is_keyed),
            "all siblings must be keyed or all siblings must be non-keyed"
        );
        debug_assert!(
            old.iter().all(|o| o.key.is_some() == old_is_keyed),
            "all siblings must be keyed or all siblings must be non-keyed"
        );

        if new_is_keyed && old_is_keyed {
            self.diff_keyed_children(old, new);
        } else {
            self.diff_non_keyed_children(old, new);
        }
    }

    // Diff children that are not keyed.
    //
    // The parent must be on the top of the change list stack when entering this
    // function:
    //
    //     [... parent]
    //
    // the change list stack is in the same state when this function returns.
    fn diff_non_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
        use std::cmp::Ordering;

        // Handled these cases in `diff_children` before calling this function.
        debug_assert!(!new.is_empty());
        debug_assert!(!old.is_empty());

        match old.len().cmp(&new.len()) {
            Ordering::Greater => self.remove_nodes(&old[new.len()..]),
            Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
            Ordering::Equal => {}
        }

        for (new, old) in new.iter().zip(old.iter()) {
            self.diff_node(old, new);
        }
    }

    // Diffing "keyed" children.
    //
    // With keyed children, we care about whether we delete, move, or create nodes
    // versus mutate existing nodes in place. Presumably there is some sort of CSS
    // transition animation that makes the virtual DOM diffing algorithm
    // observable. By specifying keys for nodes, we know which virtual DOM nodes
    // must reuse (or not reuse) the same physical DOM nodes.
    //
    // This is loosely based on Inferno's keyed patching implementation. However, we
    // have to modify the algorithm since we are compiling the diff down into change
    // list instructions that will be executed later, rather than applying the
    // changes to the DOM directly as we compare virtual DOMs.
    //
    // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
    //
    // The stack is empty upon entry.
    fn diff_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
        if cfg!(debug_assertions) {
            let mut keys = rustc_hash::FxHashSet::default();
            let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
                keys.clear();
                for child in children {
                    let key = child.key;
                    debug_assert!(
                        key.is_some(),
                        "if any sibling is keyed, all siblings must be keyed"
                    );
                    keys.insert(key);
                }
                debug_assert_eq!(
                    children.len(),
                    keys.len(),
                    "keyed siblings must each have a unique key"
                );
            };
            assert_unique_keys(old);
            assert_unique_keys(new);
        }

        // First up, we diff all the nodes with the same key at the beginning of the
        // children.
        //
        // `shared_prefix_count` is the count of how many nodes at the start of
        // `new` and `old` share the same keys.
        let (left_offset, right_offset) = match self.diff_keyed_ends(old, new) {
            Some(count) => count,
            None => return,
        };

        // Ok, we now hopefully have a smaller range of children in the middle
        // within which to re-order nodes with the same keys, remove old nodes with
        // now-unused keys, and create new nodes with fresh keys.

        let old_middle = &old[left_offset..(old.len() - right_offset)];
        let new_middle = &new[left_offset..(new.len() - right_offset)];

        debug_assert!(
            !((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
            "keyed children must have the same number of children"
        );

        if new_middle.is_empty() {
            // remove the old elements
            self.remove_nodes(old_middle);
        } else if old_middle.is_empty() {
            // there were no old elements, so just create the new elements
            // we need to find the right "foothold" though - we shouldn't use the "append" at all
            if left_offset == 0 {
                // insert at the beginning of the old list
                let foothold = &old[old.len() - right_offset];
                self.create_and_insert_before(new_middle, foothold);
            } else if right_offset == 0 {
                // insert at the end  the old list
                let foothold = old.last().unwrap();
                self.create_and_insert_after(new_middle, foothold);
            } else {
                // inserting in the middle
                let foothold = &old[left_offset - 1];
                self.create_and_insert_after(new_middle, foothold);
            }
        } else {
            self.diff_keyed_middle(old_middle, new_middle);
        }
    }

    /// Diff both ends of the children that share keys.
    ///
    /// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
    ///
    /// If there is no offset, then this function returns None and the diffing is complete.
    fn diff_keyed_ends(
        &mut self,
        old: &'b [VNode<'b>],
        new: &'b [VNode<'b>],
    ) -> Option<(usize, usize)> {
        let mut left_offset = 0;

        for (old, new) in old.iter().zip(new.iter()) {
            // abort early if we finally run into nodes with different keys
            if old.key != new.key {
                break;
            }
            self.diff_node(old, new);
            left_offset += 1;
        }

        // If that was all of the old children, then create and append the remaining
        // new children and we're finished.
        if left_offset == old.len() {
            self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
            return None;
        }

        // And if that was all of the new children, then remove all of the remaining
        // old children and we're finished.
        if left_offset == new.len() {
            self.remove_nodes(&old[left_offset..]);
            return None;
        }

        // if the shared prefix is less than either length, then we need to walk backwards
        let mut right_offset = 0;
        for (old, new) in old.iter().rev().zip(new.iter().rev()) {
            // abort early if we finally run into nodes with different keys
            if old.key != new.key {
                break;
            }
            self.diff_node(old, new);
            right_offset += 1;
        }

        Some((left_offset, right_offset))
    }

    // The most-general, expensive code path for keyed children diffing.
    //
    // We find the longest subsequence within `old` of children that are relatively
    // ordered the same way in `new` (via finding a longest-increasing-subsequence
    // of the old child's index within `new`). The children that are elements of
    // this subsequence will remain in place, minimizing the number of DOM moves we
    // will have to do.
    //
    // Upon entry to this function, the change list stack must be empty.
    //
    // This function will load the appropriate nodes onto the stack and do diffing in place.
    //
    // Upon exit from this function, it will be restored to that same self.
    #[allow(clippy::too_many_lines)]
    fn diff_keyed_middle(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
        /*
        1. Map the old keys into a numerical ordering based on indices.
        2. Create a map of old key to its index
        3. Map each new key to the old key, carrying over the old index.
            - IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
            - if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist

        now, we should have a list of integers that indicates where in the old list the new items map to.

        4. Compute the LIS of this list
            - this indicates the longest list of new children that won't need to be moved.

        5. Identify which nodes need to be removed
        6. Identify which nodes will need to be diffed

        7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
            - if the item already existed, just move it to the right place.

        8. Finally, generate instructions to remove any old children.
        9. Generate instructions to finally diff children that are the same between both
        */
        // 0. Debug sanity checks
        // Should have already diffed the shared-key prefixes and suffixes.
        debug_assert_ne!(new.first().map(|i| i.key), old.first().map(|i| i.key));
        debug_assert_ne!(new.last().map(|i| i.key), old.last().map(|i| i.key));

        // 1. Map the old keys into a numerical ordering based on indices.
        // 2. Create a map of old key to its index
        // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
        let old_key_to_old_index = old
            .iter()
            .enumerate()
            .map(|(i, o)| (o.key.unwrap(), i))
            .collect::<FxHashMap<_, _>>();

        let mut shared_keys = FxHashSet::default();

        // 3. Map each new key to the old key, carrying over the old index.
        let new_index_to_old_index = new
            .iter()
            .map(|node| {
                let key = node.key.unwrap();
                if let Some(&index) = old_key_to_old_index.get(&key) {
                    shared_keys.insert(key);
                    index
                } else {
                    u32::MAX as usize
                }
            })
            .collect::<Vec<_>>();

        // If none of the old keys are reused by the new children, then we remove all the remaining old children and
        // create the new children afresh.
        if shared_keys.is_empty() {
            if old.get(0).is_some() {
                self.remove_nodes(&old[1..]);
                self.replace(&old[0], new);
            } else {
                // I think this is wrong - why are we appending?
                // only valid of the if there are no trailing elements
                // self.create_and_append_children(new);

                todo!("we should never be appending - just creating N");
            }
            return;
        }

        // remove any old children that are not shared
        // todo: make this an iterator
        for child in old {
            let key = child.key.unwrap();
            if !shared_keys.contains(&key) {
                self.remove_node(child, true);
            }
        }

        // 4. Compute the LIS of this list
        let mut lis_sequence = Vec::default();
        lis_sequence.reserve(new_index_to_old_index.len());

        let mut predecessors = vec![0; new_index_to_old_index.len()];
        let mut starts = vec![0; new_index_to_old_index.len()];

        longest_increasing_subsequence::lis_with(
            &new_index_to_old_index,
            &mut lis_sequence,
            |a, b| a < b,
            &mut predecessors,
            &mut starts,
        );

        // the lis comes out backwards, I think. can't quite tell.
        lis_sequence.sort_unstable();

        // if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
        if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
            lis_sequence.pop();
        }

        for idx in &lis_sequence {
            self.diff_node(&old[new_index_to_old_index[*idx]], &new[*idx]);
        }

        let mut nodes_created = 0;

        // add mount instruction for the first items not covered by the lis
        let last = *lis_sequence.last().unwrap();
        if last < (new.len() - 1) {
            for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
                let new_idx = idx + last + 1;
                let old_index = new_index_to_old_index[new_idx];
                if old_index == u32::MAX as usize {
                    nodes_created += self.create(new_node);
                } else {
                    self.diff_node(&old[old_index], new_node);
                    nodes_created += self.push_all_real_nodes(new_node);
                }
            }

            let id = self.find_last_element(&new[last]);
            self.mutations.push(Mutation::InsertAfter {
                id,
                m: nodes_created,
            });
            nodes_created = 0;
        }

        // for each spacing, generate a mount instruction
        let mut lis_iter = lis_sequence.iter().rev();
        let mut last = *lis_iter.next().unwrap();
        for next in lis_iter {
            if last - next > 1 {
                for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
                    let new_idx = idx + next + 1;
                    let old_index = new_index_to_old_index[new_idx];
                    if old_index == u32::MAX as usize {
                        nodes_created += self.create(new_node);
                    } else {
                        self.diff_node(&old[old_index], new_node);
                        nodes_created += self.push_all_real_nodes(new_node);
                    }
                }

                let id = self.find_first_element(&new[last]);
                self.mutations.push(Mutation::InsertBefore {
                    id,
                    m: nodes_created,
                });

                nodes_created = 0;
            }
            last = *next;
        }

        // add mount instruction for the last items not covered by the lis
        let first_lis = *lis_sequence.first().unwrap();
        if first_lis > 0 {
            for (idx, new_node) in new[..first_lis].iter().enumerate() {
                let old_index = new_index_to_old_index[idx];
                if old_index == u32::MAX as usize {
                    nodes_created += self.create(new_node);
                } else {
                    self.diff_node(&old[old_index], new_node);
                    nodes_created += self.push_all_real_nodes(new_node);
                }
            }

            let id = self.find_first_element(&new[first_lis]);
            self.mutations.push(Mutation::InsertBefore {
                id,
                m: nodes_created,
            });
        }
    }

    /// Push all the real nodes on the stack
    fn push_all_real_nodes(&mut self, node: &'b VNode<'b>) -> usize {
        node.template
            .get()
            .roots
            .iter()
            .enumerate()
            .map(|(idx, _)| {
                let node = match node.dynamic_root(idx) {
                    Some(node) => node,
                    None => {
                        self.mutations.push(Mutation::PushRoot {
                            id: node.root_ids.get(idx).unwrap(),
                        });
                        return 1;
                    }
                };

                match node {
                    Text(t) => {
                        self.mutations.push(Mutation::PushRoot {
                            id: t.id.get().unwrap(),
                        });
                        1
                    }
                    Placeholder(t) => {
                        self.mutations.push(Mutation::PushRoot {
                            id: t.id.get().unwrap(),
                        });
                        1
                    }
                    Fragment(nodes) => nodes
                        .iter()
                        .map(|node| self.push_all_real_nodes(node))
                        .count(),

                    Component(comp) => {
                        let scope = comp.scope.get().unwrap();
                        match unsafe { self.scopes[scope].root_node().extend_lifetime_ref() } {
                            RenderReturn::Ready(node) => self.push_all_real_nodes(node),
                            RenderReturn::Aborted(_node) => todo!(),
                            _ => todo!(),
                        }
                    }
                }
            })
            .count()
    }

    fn create_children(&mut self, nodes: impl IntoIterator<Item = &'b VNode<'b>>) -> usize {
        nodes
            .into_iter()
            .fold(0, |acc, child| acc + self.create(child))
    }

    fn create_and_insert_before(&mut self, new: &'b [VNode<'b>], before: &'b VNode<'b>) {
        let m = self.create_children(new);
        let id = self.find_first_element(before);
        self.mutations.push(Mutation::InsertBefore { id, m })
    }

    fn create_and_insert_after(&mut self, new: &'b [VNode<'b>], after: &'b VNode<'b>) {
        let m = self.create_children(new);
        let id = self.find_last_element(after);
        self.mutations.push(Mutation::InsertAfter { id, m })
    }

    /// Simply replace a placeholder with a list of nodes
    fn replace_placeholder(
        &mut self,
        l: &'b VPlaceholder,
        r: impl IntoIterator<Item = &'b VNode<'b>>,
    ) {
        let m = self.create_children(r);
        let id = l.id.get().unwrap();
        self.mutations.push(Mutation::ReplaceWith { id, m });
        self.reclaim(id);
    }

    fn replace(&mut self, left: &'b VNode<'b>, right: impl IntoIterator<Item = &'b VNode<'b>>) {
        let m = self.create_children(right);

        let pre_edits = self.mutations.edits.len();

        self.remove_node(left, true);

        // We should always have a remove mutation
        // Eventually we don't want to generate placeholders, so this might not be true. But it's true today
        assert!(self.mutations.edits.len() > pre_edits);

        // We want to optimize the replace case to use one less mutation if possible
        // Since mutations are done in reverse, the last node removed will be the first in the stack
        // Instead of *just* removing it, we can use the replace mutation
        match self.mutations.edits.pop().unwrap() {
            Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m }),
            _ => panic!("Expected remove mutation from remove_node"),
        };
    }

    fn node_to_placeholder(&mut self, l: &'b [VNode<'b>], r: &'b VPlaceholder) {
        // Create the placeholder first, ensuring we get a dedicated ID for the placeholder
        let placeholder = self.next_element(&l[0], &[]);

        r.id.set(Some(placeholder));

        self.mutations
            .push(Mutation::CreatePlaceholder { id: placeholder });

        self.remove_nodes(l);

        // We want to optimize the replace case to use one less mutation if possible
        // Since mutations are done in reverse, the last node removed will be the first in the stack
        // Instead of *just* removing it, we can use the replace mutation
        match self.mutations.edits.pop().unwrap() {
            Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m: 1 }),
            _ => panic!("Expected remove mutation from remove_node"),
        };
    }

    /// Remove these nodes from the dom
    /// Wont generate mutations for the inner nodes
    fn remove_nodes(&mut self, nodes: &'b [VNode<'b>]) {
        nodes
            .iter()
            .rev()
            .for_each(|node| self.remove_node(node, true));
    }

    fn remove_node(&mut self, node: &'b VNode<'b>, gen_muts: bool) {
        // Clean up any attributes that have claimed a static node as dynamic for mount/unmounta
        // Will not generate mutations!
        self.reclaim_attributes(node);

        // Remove the nested dynamic nodes
        // We don't generate mutations for these, as they will be removed by the parent (in the next line)
        // But we still need to make sure to reclaim them from the arena and drop their hooks, etc
        self.remove_nested_dyn_nodes(node);

        // Clean up the roots, assuming we need to generate mutations for these
        // This is done last in order to preserve Node ID reclaim order (reclaim in reverse order of claim)
        self.reclaim_roots(node, gen_muts);
    }

    fn reclaim_roots(&mut self, node: &VNode, gen_muts: bool) {
        for (idx, _) in node.template.get().roots.iter().enumerate() {
            if let Some(dy) = node.dynamic_root(idx) {
                self.remove_dynamic_node(dy, gen_muts);
            } else {
                let id = node.root_ids.get(idx).unwrap();
                if gen_muts {
                    self.mutations.push(Mutation::Remove { id });
                }
                self.reclaim(id);
            }
        }
    }

    fn reclaim_attributes(&mut self, node: &VNode) {
        let mut id = None;
        for (idx, attr) in node.dynamic_attrs.iter().enumerate() {
            // We'll clean up the root nodes either way, so don't worry
            let path_len = node
                .template
                .get()
                .attr_paths
                .get(idx)
                .map(|path| path.len());
            // if the path is 1 the attribute is in the root, so we don't need to clean it up
            // if the path is 0, the attribute is a not attached at all, so we don't need to clean it up

            if let Some(len) = path_len {
                if (..=1).contains(&len) {
                    continue;
                }
            }

            let next_id = attr.mounted_element.get();

            if id == Some(next_id) {
                continue;
            }

            id = Some(next_id);

            self.reclaim(next_id);
        }
    }

    fn remove_nested_dyn_nodes(&mut self, node: &VNode) {
        for (idx, dyn_node) in node.dynamic_nodes.iter().enumerate() {
            let path_len = node
                .template
                .get()
                .node_paths
                .get(idx)
                .map(|path| path.len());
            // Roots are cleaned up automatically above and nodes with a empty path are placeholders
            if let Some(2..) = path_len {
                self.remove_dynamic_node(dyn_node, false)
            }
        }
    }

    fn remove_dynamic_node(&mut self, node: &DynamicNode, gen_muts: bool) {
        match node {
            Component(comp) => self.remove_component_node(comp, gen_muts),
            Text(t) => self.remove_text_node(t, gen_muts),
            Placeholder(t) => self.remove_placeholder(t, gen_muts),
            Fragment(nodes) => nodes
                .iter()
                .for_each(|node| self.remove_node(node, gen_muts)),
        };
    }

    fn remove_placeholder(&mut self, t: &VPlaceholder, gen_muts: bool) {
        if let Some(id) = t.id.take() {
            if gen_muts {
                self.mutations.push(Mutation::Remove { id });
            }
            self.reclaim(id)
        }
    }

    fn remove_text_node(&mut self, t: &VText, gen_muts: bool) {
        if let Some(id) = t.id.take() {
            if gen_muts {
                self.mutations.push(Mutation::Remove { id });
            }
            self.reclaim(id)
        }
    }

    fn remove_component_node(&mut self, comp: &VComponent, gen_muts: bool) {
        // Remove the component reference from the vcomponent so they're not tied together
        let scope = comp
            .scope
            .take()
            .expect("VComponents to always have a scope");

        // Remove the component from the dom
        match unsafe { self.scopes[scope].root_node().extend_lifetime_ref() } {
            RenderReturn::Ready(t) => self.remove_node(t, gen_muts),
            RenderReturn::Aborted(placeholder) => self.remove_placeholder(placeholder, gen_muts),
            _ => todo!(),
        };

        // Restore the props back to the vcomponent in case it gets rendered again
        let props = self.scopes[scope].props.take();
        *comp.props.borrow_mut() = unsafe { std::mem::transmute(props) };

        // Now drop all the resouces
        self.drop_scope(scope, false);
    }

    fn find_first_element(&self, node: &'b VNode<'b>) -> ElementId {
        match node.dynamic_root(0) {
            None => node.root_ids.get(0).unwrap(),
            Some(Text(t)) => t.id.get().unwrap(),
            Some(Fragment(t)) => self.find_first_element(&t[0]),
            Some(Placeholder(t)) => t.id.get().unwrap(),
            Some(Component(comp)) => {
                let scope = comp.scope.get().unwrap();
                match unsafe { self.scopes[scope].root_node().extend_lifetime_ref() } {
                    RenderReturn::Ready(t) => self.find_first_element(t),
                    _ => todo!("cannot handle nonstandard nodes"),
                }
            }
        }
    }

    fn find_last_element(&self, node: &'b VNode<'b>) -> ElementId {
        match node.dynamic_root(node.template.get().roots.len() - 1) {
            None => node.root_ids.last().unwrap(),
            Some(Text(t)) => t.id.get().unwrap(),
            Some(Fragment(t)) => self.find_last_element(t.last().unwrap()),
            Some(Placeholder(t)) => t.id.get().unwrap(),
            Some(Component(comp)) => {
                let scope = comp.scope.get().unwrap();
                match unsafe { self.scopes[scope].root_node().extend_lifetime_ref() } {
                    RenderReturn::Ready(t) => self.find_last_element(t),
                    _ => todo!("cannot handle nonstandard nodes"),
                }
            }
        }
    }
}

/// Are the templates the same?
///
/// We need to check for the obvious case, and the non-obvious case where the template as cloned
///
/// We use the pointer of the dynamic_node list in this case
fn templates_are_the_same<'b>(left_template: &'b VNode<'b>, right_template: &'b VNode<'b>) -> bool {
    std::ptr::eq(left_template, right_template)
}

fn templates_are_different(left_template: &VNode, right_template: &VNode) -> bool {
    let left_template_name = left_template.template.get().name;
    let right_template_name = right_template.template.get().name;
    // we want to re-create the node if the template name is different by pointer even if the value is the same so that we can detect when hot reloading changes the template
    !std::ptr::eq(left_template_name, right_template_name)
}

fn matching_components<'a>(
    left: &'a VNode<'a>,
    right: &'a VNode<'a>,
) -> Option<Vec<(&'a VComponent<'a>, &'a VComponent<'a>)>> {
    let left_template = left.template.get();
    let right_template = right.template.get();
    if left_template.roots.len() != right_template.roots.len() {
        return None;
    }

    // run through the components, ensuring they're the same
    left_template
        .roots
        .iter()
        .zip(right_template.roots.iter())
        .map(|(l, r)| {
            let (l, r) = match (l, r) {
                (TemplateNode::Dynamic { id: l }, TemplateNode::Dynamic { id: r }) => (l, r),
                _ => return None,
            };

            let (l, r) = match (&left.dynamic_nodes[*l], &right.dynamic_nodes[*r]) {
                (Component(l), Component(r)) => (l, r),
                _ => return None,
            };

            Some((l, r))
        })
        .collect()
}

/// We can apply various optimizations to dynamic nodes that are the single child of their parent.
///
/// IE
///  - for text - we can use SetTextContent
///  - for clearning children we can use RemoveChildren
///  - for appending children we can use AppendChildren
#[allow(dead_code)]
fn is_dyn_node_only_child(node: &VNode, idx: usize) -> bool {
    let template = node.template.get();
    let path = template.node_paths[idx];

    // use a loop to index every static node's children until the path has run out
    // only break if the last path index is a dynamic node
    let mut static_node = &template.roots[path[0] as usize];

    for i in 1..path.len() - 1 {
        match static_node {
            TemplateNode::Element { children, .. } => static_node = &children[path[i] as usize],
            _ => return false,
        }
    }

    match static_node {
        TemplateNode::Element { children, .. } => children.len() == 1,
        _ => false,
    }
}