diffusionx 0.9.1

A multi-threaded crate for random number generation and stochastic process simulation, with optional CUDA GPU acceleration.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
<div align=center>
<h1 aligh="center">
DiffusionX
</h1>
<p align="center">
A multi-threaded high-performance Rust library for random number generation and stochastic process simulation, with optional CUDA GPU acceleration.
</p>
<p align="center">
English | <a href="README-zh.md">简体中文</a>
</p>
<p align="center">
<a href="https://crates.io/crates/diffusionx"> <img alt="Crates.io Version" src="https://img.shields.io/crates/v/diffusionx?style=for-the-badge"> </a>
<a href="https://docs.rs/diffusionx"> <img alt="docs.rs" src="https://img.shields.io/docsrs/diffusionx?style=for-the-badge"> </a>
<img alt="License: MIT OR Apache-2.0" src="https://img.shields.io/crates/l/diffusionx?style=for-the-badge">
<img alt="Downloads" src="https://img.shields.io/crates/d/diffusionx?style=for-the-badge">
</p>
</div>

## Implemented


### Random Number Generation


- [x] Normal distribution
- [x] Uniform distribution
- [x] Exponential distribution
- [x] Poisson distribution
- [x] $\alpha$-stable distribution

### GPU Acceleration (CUDA)


- [x] Brownian motion moment calculations
- [x] $\alpha$-stable Lévy process moment calculations
- [x] Ornstein-Uhlenbeck process moment calculations
- [x] $\alpha$-stable random number generation

> [!NOTE]
> DiffusionX uses the high-quality [Xoshiro256++]https://prng.di.unimi.it/ random number generator as the common entropy source across all distributions.

### Stochastic Processes Simulation


- [x] Brownian motion
- [x] $\alpha$-stable Lévy process
- [x] Cauchy process
- [x] $\alpha$-stable subordinator
- [x] Inverse $\alpha$-stable subordinator
- [x] Poisson process
- [x] Fractional Brownian motion
- [x] Continuous-time random walk
- [x] Ornstein-Uhlenbeck process
- [x] Langevin equation
- [x] Generalized Langevin equation
- [x] Subordinated Langevin equation
- [x] Lévy walk
- [x] Birth-death process
- [x] Random walk
- [x] Brownian excursion
- [x] Brownian meander
- [x] Gamma process
- [x] Geometric Brownian motion
- [x] Brownian yet non-Gaussian process


## Usage


### Random Number Generation


```rust
use diffusionx::random::{normal, uniform, stable};
fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Generate a normal random number with mean 0.0 and std 1.0
    let normal_sample = normal::rand(0.0, 1.0)?;
    // Generate 1000 standard normal random numbers
    let std_normal_samples = normal::standard_rands::<f64>(1000);

    // Generate a uniform random number in range [0, 10)
    let uniform_sample = uniform::range_rand(0..10)?;
    // Generate 1000 uniform random numbers in range [0, 1)
    let std_uniform_samples = uniform::standard_rands(1000);

    // Generate 1000 standard stable random numbers
    let stable_samples = stable::standard_rands(1.5, 0.5, 1000)?;

    Ok(())
}
```

### Stochastic Process Simulation


```rust
use diffusionx::simulation::{prelude::*, continuous::Bm};
fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create standard Brownian motion object
    let bm = Bm::default();
    // Create trajectory with duration 1.0
    let traj = bm.duration(1.0)?;
    // Simulate Brownian motion trajectory with time step 0.01
    let (times, positions) = traj.simulate(0.01)?;
    println!("times: {:?}", times);
    println!("positions: {:?}", positions);

    // Calculate first-order raw moment with 1000 particles and time step 0.01
    let mean = traj.raw_moment(1, 1000, 0.01)?;
    println!("mean: {mean}");
    // Calculate second-order central moment with 1000 particles and time step 0.01
    let msd = traj.central_moment(2, 1000, 0.01)?;
    println!("MSD: {msd}");
    // Calculate EATAMSD with duration 100.0, delta 1.0, 10000 particles, time step 0.1,
    // and Gauss-Legendre quadrature order 10
    let eatamsd = bm.eatamsd(100.0, 1.0, 10000, 0.1, 10)?;
    println!("EATAMSD: {eatamsd}");
    // Calculate first passage time of Brownian motion with boundaries at -1.0 and 1.0
    let fpt = bm.fpt((-1.0, 1.0), 1000, 0.01)?;
    println!("fpt: {fpt}");
    Ok(())
}
```

### Visualization


> [!NOTE]
> The visualization requires the `visualize` feature to be enabled.
> ```toml
> # In your Cargo.toml
> [dependencies]
> diffusionx = { version = "*", features = ["visualize"] }
> ```

```rust
use diffusionx::{
    simulation::{continuous::Bm, prelude::*},
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create Brownian motion trajectory
    let bm = Bm::default();
    let traj = bm.duration(10.0)?;

    // Configure and create visualization
    let config = PlotConfigBuilder::default()
    .time_step(0.01)
    .output_path("brownian_motion.png")
    .caption("Brownian Motion Trajectory")
    .x_label("t")
    .y_label("B")
    .legend("bm")
    .size((800, 600))
    .backend(PlotterBackend::BitMap)
    .build()?;

    // Generate plot
    traj.plot(&config)?;

    Ok(())
}
```

## Architecture and Extensibility


DiffusionX is designed with a trait-based system for high extensibility and performance:

### Core Traits


- `ContinuousProcess`: Base trait for continuous stochastic processes
- `PointProcess`: Base trait for point processes
- `DiscreteProcess`: Base trait for discrete stochastic processes
- `Moment`: Trait for statistical moments calculation, including raw and central moments
- `Visualize`: Trait for plotting process trajectories

### Extending with Custom Processes


1. Adding a New Continuous Process:
   ```rust
   #[derive(Debug, Clone)]
   struct MyProcess {
       // Your parameters
       // Should be `Send + Sync` for parallel computation
       // and `Clone`
   }

   impl ContinuousProcess for MyProcess {
       fn start(&self) -> f64 {
           0.0  // or any default value
       }
       fn simulate(
            &self,
            duration: f64,
            time_step: f64
        ) -> XResult<(Vec<f64>, Vec<f64>)> {
           // Implement your simulation logic
           todo!()
       }
   }
   ```

2. Implementing `ContinuousProcess` trait automatically provides
    - mean `mean`
    - msd `msd`
    - raw moment `raw_moment`
    - central moment `central_moment`
    - first passage time `fpt`
    - occupation time `occupation_time`
    - TAMSD `tamsd`
    - visualization `plot`

**Example:**

Run the following Cargo command in your project directory:
```bash
cargo add diffusionx --features io,visualize
```
or add the following line to your Cargo.toml:
```toml
[dependencies]
diffusionx = { version = "*", features = ["io", "visualize"] }
```

```rust
#[cfg(feature = "io")]

use diffusionx::utils::write_csv;
use diffusionx::{
    XError, XResult, check_duration_time_step,
    random::normal,
    simulation::prelude::*,
    utils::{diff, linspace},
};

/// CIR
#[allow(clippy::upper_case_acronyms)]

#[derive(Clone)]

struct CIR {
    speed: f64,
    mean: f64,
    volatility: f64,
    start_position: f64,
}

impl CIR {
    fn new(
        speed: impl Into<f64>,
        mean: impl Into<f64>,
        volatility: impl Into<f64>,
        start_position: impl Into<f64>,
    ) -> XResult<Self> {
        let speed: f64 = speed.into();
        if speed <= 0.0 {
            return Err(XError::InvalidParameters(format!(
                "speed must be greater than 0, but got {speed}"
            )));
        }
        Ok(Self {
            speed,
            mean: mean.into(),
            volatility: volatility.into(),
            start_position: start_position.into(),
        })
    }
}

impl ContinuousProcess for CIR {
    fn start(&self) -> f64 {
        self.start_position
    }

    fn simulate(&self, duration: f64, time_step: f64) -> XResult<Pair> {
        check_duration_time_step(duration, time_step)?;

        let t = linspace(0.0, duration, time_step);
        let num_steps = t.len() - 1;
        let initial_x = self.start_position.max(0.0);
        let noises = normal::standard_rands::<f64>(num_steps);
        let delta = diff(&t);

        let x = std::iter::once(initial_x)
            .chain(
                noises
                    .iter()
                    .zip(delta)
                    .scan(initial_x, |state, (&xi, delta_t)| {
                        let current_x = *state;
                        let drift = self.speed * (self.mean - current_x);
                        let diffusion = self.volatility * current_x.sqrt().max(0.0);

                        let next_x = current_x + drift * delta_t + diffusion * xi * delta_t.sqrt();
                        *state = next_x.max(0.0);

                        Some(*state)
                    }),
            )
            .collect();

        Ok((t, x))
    }
}

fn main() -> XResult<()> {
    let duration = 10.0;
    let particles = 10_000;
    let time_step = 0.01;
    let cir = CIR::new(1, 1, 1, 0.5)?;

    #[allow(unused)]
    let (t, x) = cir.simulate(duration, time_step)?;
    #[cfg(feature = "io")]
    write_csv("tmp/CIR.csv", &t, &x)?;
    // mean
    let mean = cir.mean(duration, particles, time_step)?; // or let mean = traj.raw_moment(1, particles, time_step)?;
    println!("mean: {mean}");
    // msd
    let msd = cir.msd(duration, particles, time_step)?; // or let msd = traj.central_moment(2, particles, time_step)?;
    println!("MSD: {msd}");
    // FPT
    let max_duration = 1000.0;
    let fpt = cir
        .fpt((-1.0, 1.0), max_duration, time_step)?
        .unwrap_or(-1.0);
    println!("FPT: {fpt}");
    // occupation time
    let occupation_time = cir.occupation_time((-1.0, 1.0), duration, time_step)?;
    println!("Occupation Time: {occupation_time}");
    // TAMSD
    let slag = 1.0;
    let quad_order = 10;
    let tamsd = TAMSD::new(&cir, duration, slag)?;
    let eatamsd = tamsd.mean(particles, time_step, quad_order)?;
    println!("EATAMSD: {eatamsd}");

    #[cfg(feature = "visualize")]
    {
        let traj = cir.duration(duration)?;
        // Visualization
        let config = PlotConfigBuilder::default()
            .time_step(time_step)
            .output_path("tmp/CIR.svg")
            .caption("CIR")
            .show_grid(false)
            .x_label("t")
            .y_label("r")
            .legend("CIR")
            .backend(PlotterBackend::SVG)
            .build()
            .unwrap();
        traj.plot(&config)?;
    }
    Ok(())
}
```

**Result:**
```
mean: 0.9957644815350275
MSD: 0.7441251895881059
FPT: 0.38
Occupation Time: 4.719999999999995
EATAMSD: 0.6085042089895467
```
<img src="https://raw.githubusercontent.com/tangxiangong/diffusionx/dev/assets/CIR.svg" alt="CIR"/>

### GPU Acceleration


> [!NOTE]
> GPU acceleration requires the `cuda` feature and a CUDA-capable GPU.
> ```toml
> # In your Cargo.toml
> [dependencies]
> diffusionx = { version = "*", features = ["cuda"] }
> ```

```rust
use diffusionx::{
    simulation::continuous::Bm,
    gpu::GPUMoment,
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
    let bm = Bm::<f32>::default();

    // GPU-accelerated moment calculations
    let mean = bm.mean_gpu(1.0, 100_000, 0.01)?;
    let msd = bm.msd_gpu(1.0, 100_000, 0.01)?;
    let raw_moment = bm.raw_moment_gpu(1.0, 2, 100_000, 0.01)?;
    let central_moment = bm.central_moment_gpu(1.0, 2, 100_000, 0.01)?;

    // Fractional moments are also supported
    let frac_raw = bm.frac_raw_moment_gpu(1.0, 1.5, 100_000, 0.01)?;
    let frac_central = bm.frac_central_moment_gpu(1.0, 1.5, 100_000, 0.01)?;

    println!("Mean: {mean}, MSD: {msd}");
    Ok(())
}
```

GPU-accelerated stable random number generation:

```rust
use diffusionx::gpu::stable::standard_stable_rands;
fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Generate 1 million stable random numbers on GPU
    let samples = standard_stable_rands(1.5, 0.5, 1_000_000)?;
    Ok(())
}
```

## Benchmark


Performance benchmark tests compare the Rust, C++, Julia, and Python implementations, which can be found [here](https://github.com/tangxiangong/diffusionx-benches).


## License


Licensed under either of:

 * Apache License, Version 2.0, ([LICENSE-APACHE]LICENSE-APACHE or <https://www.apache.org/licenses/LICENSE-2.0>)
 * MIT license ([LICENSE-MIT]LICENSE-MIT or <https://opensource.org/licenses/MIT>)

at your option.

### Contribution


Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any
additional terms or conditions.

---

Dedicated to my brief yet unforgettable years in Lanzhou and to XX.