<div align=center>
<h1 aligh="center">
DiffusionX
</h1>
<p align="center">
A multi-threaded high-performance Rust library for random number generation and stochastic process simulation, with optional GPU acceleration.
</p>
<p align="center">
English | <a href="README-zh.md">简体中文</a>
</p>
<p align="center">
<a href="https://crates.io/crates/diffusionx"> <img alt="Crates.io Version" src="https://img.shields.io/crates/v/diffusionx?style=for-the-badge"> </a>
<a href="https://docs.rs/diffusionx"> <img alt="docs.rs" src="https://img.shields.io/docsrs/diffusionx?style=for-the-badge"> </a>
<img alt="License: MIT OR Apache-2.0" src="https://img.shields.io/crates/l/diffusionx?style=for-the-badge">
<img alt="Downloads" src="https://img.shields.io/crates/d/diffusionx?style=for-the-badge">
</p>
</div>
## Implemented
### Random Number Generation
> [!NOTE]
> DiffusionX uses the high-quality [Xoshiro256++](https://prng.di.unimi.it/) random number generator as the common entropy source across all distributions.
- Normal distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- $\alpha$-stable distribution
### Stochastic Processes Simulation
- Brownian motion
- $\alpha$-stable Lévy process
- Cauchy process
- $\alpha$-stable subordinator
- Inverse $\alpha$-stable subordinator
- Poisson process
- Fractional Brownian motion
- Continuous-time random walk
- Ornstein-Uhlenbeck process
- Langevin equation
- Generalized Langevin equation
- Subordinated Langevin equation
- Lévy walk
- Birth-death process
- Random walk
- Brownian excursion
- Brownian meander
- Gamma process
- Geometric Brownian motion
- Brownian yet non-Gaussian process
### GPU Acceleration (CUDA/Metal)
The acceleration includes moment calculation and random number generation.
- Brownian motion
- $\alpha$-stable Lévy process
- Ornstein-Uhlenbeck process
- $\alpha$-stable distribution
## Usage
### Random Number Generation
```rust
use diffusionx::random::{normal, uniform, stable};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Generate a normal random number with mean 0.0 and std 1.0
let normal_sample = normal::rand(0.0, 1.0)?;
// Generate 1000 standard normal random numbers
let std_normal_samples = normal::standard_rands::<f64>(1000);
// Generate a uniform random number in range [0, 10)
let uniform_sample = uniform::range_rand(0..10)?;
// Generate 1000 uniform random numbers in range [0, 1)
let std_uniform_samples = uniform::standard_rands(1000);
// Generate 1000 standard stable random numbers
let stable_samples = stable::standard_rands(1.5, 0.5, 1000)?;
Ok(())
}
```
### Stochastic Process Simulation
```rust
use diffusionx::simulation::{prelude::*, continuous::Bm};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create standard Brownian motion object
let bm = Bm::default();
// Create trajectory with duration 1.0
let traj = bm.duration(1.0)?;
// Simulate Brownian motion trajectory with time step 0.01
let (times, positions) = traj.simulate(0.01)?;
println!("times: {:?}", times);
println!("positions: {:?}", positions);
// Calculate first-order raw moment with 1000 particles and time step 0.01
let mean = traj.raw_moment(1, 1000, 0.01)?;
println!("mean: {mean}");
// Calculate second-order central moment with 1000 particles and time step 0.01
let msd = traj.central_moment(2, 1000, 0.01)?;
println!("MSD: {msd}");
// Calculate EATAMSD with duration 100.0, delta 1.0, 10000 particles, time step 0.1,
// and Gauss-Legendre quadrature order 10
let eatamsd = bm.eatamsd(100.0, 1.0, 10000, 0.1, 10)?;
println!("EATAMSD: {eatamsd}");
// Calculate first passage time of Brownian motion with boundaries at -1.0 and 1.0
let fpt = bm.fpt((-1.0, 1.0), 1000, 0.01)?;
println!("fpt: {fpt}");
Ok(())
}
```
### Visualization
> [!NOTE]
> The visualization requires the `visualize` feature to be enabled.
> ```toml
> # In your Cargo.toml
> [dependencies]
> diffusionx = { version = "*", features = ["visualize"] }
> ```
```rust
use diffusionx::{
simulation::{continuous::Bm, prelude::*},
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create Brownian motion trajectory
let bm = Bm::default();
let traj = bm.duration(10.0)?;
// Configure and create visualization
let config = PlotConfigBuilder::default()
.time_step(0.01)
.output_path("brownian_motion.png")
.caption("Brownian Motion Trajectory")
.x_label("t")
.y_label("B")
.legend("bm")
.size((800, 600))
.backend(PlotterBackend::BitMap)
.build()?;
// Generate plot
traj.plot(&config)?;
Ok(())
}
```
### GPU Acceleration
> [!NOTE]
> This requires the `metal` or `cuda` feature to be enabled.
> ```toml
> # In your Cargo.toml
> [dependencies]
> diffusionx = { version = "*", features = ["cuda"] }
> ```
```rust
use diffusionx::{
simulation::continuous::Bm,
gpu::GPUMoment,
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let bm = Bm::<f32>::default();
// GPU-accelerated moment calculations
let mean = bm.mean_gpu(1.0, 100_000, 0.01)?;
let msd = bm.msd_gpu(1.0, 100_000, 0.01)?;
let raw_moment = bm.raw_moment_gpu(1.0, 2, 100_000, 0.01)?;
let central_moment = bm.central_moment_gpu(1.0, 2, 100_000, 0.01)?;
// Fractional moments are also supported
let frac_raw = bm.frac_raw_moment_gpu(1.0, 1.5, 100_000, 0.01)?;
let frac_central = bm.frac_central_moment_gpu(1.0, 1.5, 100_000, 0.01)?;
println!("Mean: {mean}, MSD: {msd}");
Ok(())
}
```
## Architecture and Extensibility
DiffusionX is designed with a trait-based system for high extensibility and performance:
### Core Traits
- `ContinuousProcess`: Base trait for continuous stochastic processes
- `PointProcess`: Base trait for point processes
- `DiscreteProcess`: Base trait for discrete stochastic processes
- `Moment`: Trait for statistical moments calculation, including (fractional) raw and central moments
- `Visualize`: Trait for plotting process trajectories
- `GPUMoment`: Trait for simulating the (fractional) moments in CUDA.
The `GPUMoment` trait provides GPU-accelerated statistical moment calculations. It is implemented for:
- `Bm<T>` - Brownian Motion
- `OrnsteinUhlenbeck<T>` - Ornstein-Uhlenbeck Process
- `Levy<T>` - Lévy Process
| `mean_gpu(duration, particles, time_step)` | Calculate mean (first raw moment) |
| `msd_gpu(duration, particles, time_step)` | Calculate mean squared displacement (second central moment) |
| `raw_moment_gpu(duration, order, particles, time_step)` | Calculate raw moment of integer order |
| `central_moment_gpu(duration, order, particles, time_step)` | Calculate central moment of integer order |
| `frac_raw_moment_gpu(duration, order, particles, time_step)` | Calculate raw moment of fractional order |
| `frac_central_moment_gpu(duration, order, particles, time_step)` | Calculate central moment of fractional order |
### Extending with Custom Processes
1. Adding a New Continuous Process:
```rust
#[derive(Debug, Clone)]
struct MyProcess {
}
impl ContinuousProcess for MyProcess {
fn start(&self) -> f64 {
0.0 }
fn simulate(
&self,
duration: f64,
time_step: f64
) -> XResult<(Vec<f64>, Vec<f64>)> {
todo!()
}
}
```
2. Implementing `ContinuousProcess` trait automatically provides
- mean `mean`
- msd `msd`
- (fractional) raw moment `raw_moment` (`frac_raw_moment`)
- (fractional) central moment `central_moment` (`frac_central_moment`)
- first passage time `fpt`
- occupation time `occupation_time`
- TAMSD `tamsd`
- visualization `plot`
The full example implementing the CIR process is [here](./examples/CIR.rs).
## Benchmark
Performance benchmark tests compare the Rust, C++, Julia, and Python implementations, which can be found [here](https://github.com/tangxiangong/diffusionx-benches).
## License
Licensed under either of:
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or <https://www.apache.org/licenses/LICENSE-2.0>)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or <https://opensource.org/licenses/MIT>)
at your option.
### Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any
additional terms or conditions.
---
Dedicated to my brief yet unforgettable years in LZU and to XX.
Once I dreamt that we were dear to each other, I woke to find that we were strangers. Alas, in dreams, I wouldn’t even dare to long for such closeness.