1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//! Partially ordered elements with a least upper bound.
//!
//! Lattices form the basis of differential dataflow's efficient execution in the presence of 
//! iterative sub-computations. All logical times in differential dataflow must implement the 
//! `Lattice` trait, and all reasoning in operators are done it terms of `Lattice` methods.

use timely::order::PartialOrder;

/// A bounded partially ordered type supporting joins and meets.
pub trait Lattice : PartialOrder {

    /// The smallest element of the type.
    ///
    /// #Examples
    ///
    /// ```
    /// use differential_dataflow::lattice::Lattice;
    ///
    /// let min = <usize as Lattice>::minimum();
    /// assert_eq!(min, usize::min_value());
    /// ```
    fn minimum() -> Self;

    /// The largest element of the type.
    ///
    /// #Examples
    ///
    /// ```
    /// use differential_dataflow::lattice::Lattice;
    ///
    /// let max = <usize as Lattice>::maximum();
    /// assert_eq!(max, usize::max_value());
    /// ```
    fn maximum() -> Self;

    /// The smallest element greater than or equal to both arguments.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate timely;
    /// # extern crate differential_dataflow;
    /// # use timely::PartialOrder;
    /// # use timely::progress::nested::product::Product;
    /// # use differential_dataflow::lattice::Lattice;
    /// # fn main() {
    ///
    /// let time1 = Product::new(3, 7);
    /// let time2 = Product::new(4, 6);
    /// let join = time1.join(&time2);
    ///
    /// assert_eq!(join, Product::new(4, 7));
    /// # }
    /// ```
    fn join(&self, &Self) -> Self;

    /// The largest element less than or equal to both arguments.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate timely;
    /// # extern crate differential_dataflow;
    /// # use timely::PartialOrder;
    /// # use timely::progress::nested::product::Product;
    /// # use differential_dataflow::lattice::Lattice;
    /// # fn main() {
    ///
    /// let time1 = Product::new(3, 7);
    /// let time2 = Product::new(4, 6);
    /// let meet = time1.meet(&time2);
    ///
    /// assert_eq!(meet, Product::new(3, 6));
    /// # }
    /// ```    
    fn meet(&self, &Self) -> Self;

    /// Advances self to the largest time indistinguishable under `frontier`.
    ///
    /// This method produces the "largest" lattice element with the property that for every
    /// lattice element greater than some element of `frontier`, both the result and `self`
    /// compare identically to the lattice element. The result is the "largest" element in
    /// the sense that any other element with the same property (compares identically to times
    /// greater or equal to `frontier`) must be less or equal to the result.
    ///
    /// When provided an empty frontier, the result is `<Self as Lattice>::maximum()`. It should
    /// perhaps be distinguished by an `Option<Self>` type, but the `None` case only happens
    /// when `frontier` is empty, which the caller can see for themselves if they want to be
    /// clever.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate timely;
    /// # extern crate differential_dataflow;
    /// # use timely::PartialOrder;
    /// # use timely::progress::nested::product::Product;
    /// # use differential_dataflow::lattice::Lattice;
    /// # fn main() {
    ///
    /// let time = Product::new(3, 7);
    /// let frontier = vec![Product::new(4, 8), Product::new(5, 3)];
    /// let advanced = time.advance_by(&frontier[..]);
    ///
    /// // `time` and `advanced` are indistinguishable to elements >= an element of `frontier`
    /// for i in 0 .. 10 {
    ///     for j in 0 .. 10 {
    ///         let test = Product::new(i, j);
    ///         // for `test` in the future of `frontier` ..
    ///         if frontier.iter().any(|t| t.less_equal(&test)) {
    ///             assert_eq!(time.less_equal(&test), advanced.less_equal(&test));
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(advanced, Product::new(4, 7));
    /// # }
    /// ```
    #[inline(always)]
    fn advance_by(&self, frontier: &[Self]) -> Self where Self: Sized{
        if frontier.len() > 0 {
            let mut result = self.join(&frontier[0]);
            for f in &frontier[1..] {
                result = result.meet(&self.join(f));
            }
            result
        }  
        else {
            Self::maximum()
        }
    }
}

// /// A carrier trait for totally ordered lattices.
// ///
// /// Types that implement `TotalOrder` are stating that their `Lattice` is in fact a total order.
// /// This type is only used to restrict implementations to certain types of lattices.
// ///
// /// This trait is automatically implemented for integer scalars, and for products of these types
// /// with "empty" timestamps (e.g. `RootTimestamp` and `()`). Be careful implementing this trait
// /// for your own timestamp types, as it may lead to the applicability of incorrect implementations.
// ///
// /// Note that this trait is distinct from `Ord`; many implementors of `Lattice` also implement 
// /// `Ord` so that they may be sorted, deduplicated, etc. This implementation neither derives any
// /// information from an `Ord` implementation nor informs it in any way.
// ///
// /// #Examples
// ///
// /// ```
// /// use differential_dataflow::lattice::TotalOrder;
// ///
// /// // The `join` and `meet` of totally ordered elements are always one of the two.
// /// fn invariant<T: TotalOrder>(elt1: T, elt2: T) {
// ///     if elt1.less_equal(&elt2) {
// ///         assert!(elt1.meet(&elt2) == elt1);
// ///         assert!(elt1.join(&elt2) == elt2);
// ///     }
// ///     else {
// ///         assert!(elt1.meet(&elt2) == elt2);
// ///         assert!(elt1.join(&elt2) == elt1);
// ///     }
// /// }
// /// ```
// pub trait TotalOrder : Lattice { }

use timely::progress::nested::product::Product;

impl<T1: Lattice, T2: Lattice> Lattice for Product<T1, T2> {
    #[inline(always)]
    fn minimum() -> Self { Product::new(T1::minimum(), T2::minimum()) }
    #[inline(always)]
    fn maximum() -> Self { Product::new(T1::maximum(), T2::maximum()) }
    #[inline(always)]
    fn join(&self, other: &Product<T1, T2>) -> Product<T1, T2> {
        Product {
            outer: self.outer.join(&other.outer),
            inner: self.inner.join(&other.inner),
        }
    }
    #[inline(always)]
    fn meet(&self, other: &Product<T1, T2>) -> Product<T1, T2> {
        Product {
            outer: self.outer.meet(&other.outer),
            inner: self.inner.meet(&other.inner),
        }
    }
}

macro_rules! implement_lattice {
    ($index_type:ty, $minimum:expr, $maximum:expr) => (
        impl Lattice for $index_type {
            #[inline(always)] fn minimum() -> Self { $minimum }
            #[inline(always)] fn maximum() -> Self { $maximum }
            #[inline(always)] fn join(&self, other: &Self) -> Self { ::std::cmp::max(*self, *other) }
            #[inline(always)] fn meet(&self, other: &Self) -> Self { ::std::cmp::min(*self, *other) }
        }
    )
}

use timely::progress::timestamp::RootTimestamp;

implement_lattice!(RootTimestamp, RootTimestamp, RootTimestamp);
implement_lattice!(usize, usize::min_value(), usize::max_value());
implement_lattice!(u64, u64::min_value(), u64::max_value());
implement_lattice!(u32, u32::min_value(), u32::max_value());
implement_lattice!(i32, i32::min_value(), i32::max_value());
implement_lattice!((), (), ());

// impl TotalOrder for RootTimestamp { }
// impl TotalOrder for usize { }
// impl TotalOrder for u64 { }
// impl TotalOrder for u32 { }
// impl TotalOrder for i32 { }
// impl TotalOrder for () { }