extern crate assert;
extern crate dft;
use dft::{transform, unpack, Operation, Plan, c64};
mod fixtures;
#[test]
fn complex_forward_1() {
let mut data = vec![c64::new(1.0, -2.0)];
transform(&mut data, &Plan::new(Operation::Forward, 1));
assert!(data == vec![c64::new(1.0, -2.0)]);
}
#[test]
fn complex_forward_2() {
let mut data = vec![c64::new(1.0, -2.0), c64::new(3.0, -4.0)];
transform(&mut data, &Plan::new(Operation::Forward, 2));
assert!(data == vec![c64::new(4.0, -6.0), c64::new(-2.0, 2.0)]);
}
#[test]
fn complex_forward_128() {
let mut data = fixtures::TIME_DATA_256.to_vec();
transform(as_c64_mut(&mut data), &Plan::new(Operation::Forward, 128));
assert::close(&data, &fixtures::FREQUENCY_DATA_128_COMPLEX[..], 1e-14);
}
#[test]
fn complex_forward_real_256() {
let mut data = to_c64(&fixtures::TIME_DATA_256);
transform(&mut data, &Plan::new(Operation::Forward, 256));
assert::close(
as_f64(&data),
&fixtures::FREQUENCY_DATA_256_REAL_UNPACKED[..],
1e-13,
);
}
#[test]
fn complex_inverse_128() {
let mut data = fixtures::FREQUENCY_DATA_128_COMPLEX.to_vec();
transform(as_c64_mut(&mut data), &Plan::new(Operation::Inverse, 128));
assert::close(&data, &fixtures::TIME_DATA_256[..], 1e-14);
}
#[test]
fn real_forward_1() {
let mut data = vec![1.0];
transform(&mut data, &Plan::new(Operation::Forward, 1));
assert!(unpack(&data) == vec![c64::new(1.0, 0.0)]);
}
#[test]
fn real_forward_2() {
let mut data = vec![1.0, -2.0];
transform(&mut data, &Plan::new(Operation::Forward, 2));
assert!(unpack(&data) == vec![c64::new(-1.0, 0.0), c64::new(3.0, 0.0)]);
}
#[test]
fn real_forward_4() {
let mut data = vec![1.0, -2.0, 3.0, -4.0];
transform(&mut data, &Plan::new(Operation::Forward, 4));
assert!(
unpack(&data)
== vec![
c64::new(-2.0, 0.0),
c64::new(-2.0, -2.0),
c64::new(10.0, 0.0),
c64::new(-2.0, 2.0),
]
);
}
#[test]
fn real_forward_256() {
let mut data = fixtures::TIME_DATA_256.to_vec();
transform(&mut data, &Plan::new(Operation::Forward, 256));
assert::close(&data, &fixtures::FREQUENCY_DATA_256_REAL_PACKED[..], 1e-13);
let data = unpack(&data);
assert::close(
as_f64(&data),
&fixtures::FREQUENCY_DATA_256_REAL_UNPACKED[..],
1e-13,
);
}
#[test]
fn real_forward_512() {
let mut data = fixtures::TIME_DATA_512.to_vec();
transform(&mut data, &Plan::new(Operation::Forward, 512));
let data = unpack(&data);
assert::close(
as_f64(&data),
&fixtures::FREQUENCY_DATA_512_REAL_UNPACKED[..],
1e-12,
);
}
#[test]
fn real_inverse_256() {
let mut data = fixtures::FREQUENCY_DATA_256_REAL_PACKED.to_vec();
transform(&mut data, &Plan::new(Operation::Inverse, 256));
assert::close(&data, &fixtures::TIME_DATA_256[..], 1e-14);
}
#[test]
fn real_inverse_512() {
let mut data = fixtures::TIME_DATA_512.to_vec();
transform(&mut data, &Plan::new(Operation::Forward, 512));
transform(&mut data, &Plan::new(Operation::Inverse, 512));
assert::close(&data, &fixtures::TIME_DATA_512[..], 1e-14);
}
fn as_f64(slice: &[c64]) -> &[f64] {
unsafe { std::slice::from_raw_parts(slice.as_ptr() as *const _, 2 * slice.len()) }
}
fn as_c64_mut(slice: &mut [f64]) -> &mut [c64] {
unsafe { std::slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut _, slice.len() / 2) }
}
fn to_c64(slice: &[f64]) -> Vec<c64> {
slice.iter().map(|&re| c64::new(re, 0.0)).collect()
}