1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//! methods for 2D poly loop

use num_traits::AsPrimitive;

/// area
pub fn area<T>(
    vtx2xy: &[T]) -> T
    where T: num_traits::Float + Copy + 'static + std::ops::AddAssign,
          f64: AsPrimitive<T>
{
    let num_vtx = vtx2xy.len() / 2;
    assert_eq!(vtx2xy.len(), num_vtx * 2);
    let zero = [T::zero(), T::zero()];
    let mut area = T::zero();
    for i_edge in 0..num_vtx {
        let i0 = i_edge;
        let i1 = (i_edge + 1) % num_vtx;
        let p0 = (&vtx2xy[i0 * 2..i0 * 2 + 2]).try_into().unwrap();
        let p1 = (&vtx2xy[i1 * 2..i1 * 2 + 2]).try_into().unwrap();
        area += del_geo::tri2::area_(&zero, p0, p1);
    }
    area
}

pub fn from_circle(
    rad: f32,
    n: usize) -> nalgebra::Matrix2xX<f32> {
    let mut vtx2xy = nalgebra::Matrix2xX::<f32>::zeros(n);
    for i in 0..n {
        let theta = std::f32::consts::PI * 2_f32 * i as f32 / n as f32;
        vtx2xy.column_mut(i).x = rad * f32::cos(theta);
        vtx2xy.column_mut(i).y = rad * f32::sin(theta);
    }
    vtx2xy
}

pub fn from_pentagram<Real>(
    center: &[Real],
    scale: Real) -> Vec<Real>
    where Real: num_traits::Float + 'static + Copy,
          f64: AsPrimitive<Real>,
          usize: AsPrimitive<Real>
{
    let dt: Real = (std::f64::consts::PI / 5_f64).as_();
    let hp: Real = (std::f64::consts::FRAC_PI_2).as_();
    let ratio = (2f64 / (3f64 + 5f64.sqrt())).as_();
    let mut xys = Vec::<Real>::new();
    for i in 0..10usize {
        let rad = if i % 2 == 0 { scale } else { ratio * scale };
        xys.push((dt * i.as_()+hp).cos() * rad + center[0]);
        xys.push((dt * i.as_()+hp).sin() * rad + center[1]);
    }
    xys
}

pub fn is_inside_<Real>(
    vtx2xy: &[Real],
    p: &[Real;2]) -> bool
    where Real: num_traits::Float + Copy + 'static + std::ops::AddAssign,
          f64: AsPrimitive<Real>
{
    let num_vtx = vtx2xy.len() / 2;
    let mut wn: Real = Real::zero();
    for i in 0..num_vtx {
        let j = (i + 1) % num_vtx;
        wn += del_geo::edge2::winding_number_(
            (&vtx2xy[i * 2..(i + 1) * 2]).try_into().unwrap(),
            (&vtx2xy[j * 2..(j + 1) * 2]).try_into().unwrap(),
            p);
    }
    if (wn - Real::one()).abs() < 0.1.as_() { return true; }
    false
}

pub fn distance_to_point<Real>(
    vtx2xy: &[Real],
    p: &[Real]) -> Real
where Real: nalgebra::RealField + Copy,
    f64: AsPrimitive<Real>
{
    let g = nalgebra::Vector2::<Real>::from_row_slice(p);
    // visit all the boudnary
    let np = vtx2xy.len() / 2;
    let mut dist_min = Real::max_value().unwrap();
    for ip in 0..np {
        let jp = (ip + 1) % np;
        let pi = del_geo::vec2::to_na(vtx2xy, ip);
        let pj = del_geo::vec2::to_na(vtx2xy, jp);
        let dist = del_geo::edge::distance_to_point(&g, &pi, &pj);
        if dist < dist_min {
            dist_min = dist;
        }
    }
    dist_min
}

pub fn to_uniform_density_random_points<Real>(
    vtx2xy: &[Real],
    cell_len: Real,
    rng: &mut rand::rngs::StdRng) -> Vec<Real>
    where Real: num_traits::Float + std::ops::AddAssign + Copy + 'static + AsPrimitive<usize>,
          rand::distributions::Standard: rand::prelude::Distribution<Real>,
          f64: AsPrimitive<Real>,
          usize: AsPrimitive<Real>
{
    let aabb = del_geo::aabb2::from_vtx2xy(vtx2xy);
    use rand::Rng;
    let base_pos = [aabb[0] - cell_len * rng.gen::<Real>(), aabb[1] - cell_len * rng.gen::<Real>()];
    let nx = ((aabb[2] - base_pos[0]) / cell_len).as_() + 1;
    let ny = ((aabb[3] - base_pos[1]) / cell_len).as_() + 1;
    let mut res = vec!();
    for ix in 0..nx {
        for iy in 0..ny {
            let x = base_pos[0] + (ix.as_() + rng.gen::<Real>()) * cell_len;
            let y = base_pos[1] + (iy.as_() + rng.gen::<Real>()) * cell_len;
            let is_inside = is_inside_(vtx2xy, &[x, y]);
            if !is_inside { continue; }
            res.push(x);
            res.push(y);
        }
    }
    res
}

#[allow(clippy::identity_op)]
pub fn to_svg<Real>(
    vtx2xy: &[Real],
    transform: &nalgebra::Matrix3<Real>) -> String
where Real: std::fmt::Display + Copy + nalgebra::RealField
{
    let mut res = String::new();
    for ivtx in 0..vtx2xy.len() / 2 {
        let x = vtx2xy[ivtx*2+0];
        let y = vtx2xy[ivtx*2+1];
        let a = transform * nalgebra::Vector3::<Real>::new(x, y, Real::one());
        res += format!("{} {}", a.x, a.y).as_str();
        if ivtx != vtx2xy.len()/2 - 1 {
            res += ",";
        }
    }
    res
}

// -----------------------------------------------------

pub fn winding_number<Real>(
    vtx2xy: &[nalgebra::Vector2<Real>],
    p: &nalgebra::Vector2<Real>) -> Real
    where Real: num_traits::Float + Copy + 'static + std::ops::AddAssign + std::fmt::Debug,
          f64: AsPrimitive<Real>
{
    let num_vtx = vtx2xy.len();
    let mut wn: Real = Real::zero();
    for i in 0..num_vtx {
        let j = (i + 1) % num_vtx;
        wn += del_geo::edge2::winding_number_(
            &vtx2xy[i].as_slice().try_into().unwrap(),
            &vtx2xy[j].as_slice().try_into().unwrap(),
            p.as_slice().try_into().unwrap());
    }
    wn
}

// -----------------------------------------------------

#[test]
fn test_circle() {
    let vtx2xy0 = from_circle(1.0, 300);
    let arclen0 = crate::polyloop::arclength::<f32, 2>(vtx2xy0.as_slice());
    assert!((arclen0 - 2. * std::f32::consts::PI).abs() < 1.0e-3);
    //
    {
        let ndiv1 = 330;
        let vtx2xy1 = crate::polyloop::resample::<f32, 2>(vtx2xy0.as_slice(), ndiv1);
        assert_eq!(vtx2xy1.len(), ndiv1 * 2);
        let arclen1 = crate::polyloop::arclength::<f32, 2>(vtx2xy1.as_slice());
        assert!((arclen0 - arclen1).abs() < 1.0e-3);
        let edge2length1 = crate::polyloop::edge2length::<f32, 2>(vtx2xy1.as_slice());
        let min_edge_len1 = edge2length1.iter()
            .min_by(|a, b| a.partial_cmp(b).unwrap()).unwrap();
        assert!((min_edge_len1 - arclen1 / ndiv1 as f32).abs() < 1.0e-3);
    }
    {
        let ndiv2 = 156;
        let vtx2xy2 = crate::polyloop::resample::<f32, 2>(vtx2xy0.as_slice(), ndiv2);
        assert_eq!(vtx2xy2.len(), ndiv2 * 2);
        let arclen2 = crate::polyloop::arclength::<f32, 2>(vtx2xy2.as_slice());
        assert!((arclen0 - arclen2).abs() < 1.0e-3);
        let edge2length2 = crate::polyloop::edge2length::<f32, 2>(vtx2xy2.as_slice());
        let min_edge_len2 = edge2length2.iter()
            .min_by(|a, b| a.partial_cmp(b).unwrap()).unwrap();
        assert!((min_edge_len2 - arclen2 / ndiv2 as f32).abs() < 1.0e-3);
    }
}