1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//! methods for 3D poly loop

use num_traits::AsPrimitive;

fn match_frames_of_two_ends<T>(
    vtx2xyz: &[T],
    vtx2bin0: &nalgebra::Matrix3xX::<T>) -> nalgebra::Matrix3xX::<T>
    where T: nalgebra::RealField + Copy + 'static,
          f64: AsPrimitive<T>,
          usize: AsPrimitive<T>
{
    use del_geo::vec3::navec3;
    let num_vtx = vtx2xyz.len() / 3;
    let theta = {
        let x0 = vtx2bin0.column(0);
        let xn = vtx2bin0.column(num_vtx - 1);
        let vn0 = (navec3(vtx2xyz, 0) - navec3(vtx2xyz, num_vtx - 1)).normalize();
        let v01 = (navec3(vtx2xyz, 1) - navec3(vtx2xyz, 0)).normalize();
        assert!(x0.dot(&v01).abs() < 1.0e-6_f64.as_());
        let rot = del_geo::mat3::minimum_rotation_matrix(vn0, v01);
        let x1a = rot * xn;
        let y0 = v01.cross(&x0);
        assert!(x1a.dot(&v01).abs() < 1.0e-6_f64.as_());
        assert!((y0.norm() - 1.0_f64.as_()).abs() < 1.0e-6_f64.as_());
        let c0 = x1a.dot(&x0);
        let s0 = x1a.dot(&y0);
        T::atan2(s0, c0)
    };
    let theta_step = theta / num_vtx.as_();
    let mut vtx2bin1 = nalgebra::Matrix3xX::<T>::zeros(num_vtx);
    for iseg in 0..num_vtx {
        let dtheta = theta_step * iseg.as_();
        let x0 = vtx2bin0.column(iseg);
        let ivtx0 = iseg;
        let ivtx1 = (iseg + 1) % num_vtx;
        let v01 = (navec3(vtx2xyz, ivtx1) - navec3(vtx2xyz, ivtx0)).normalize();
        let y0 = v01.cross(&x0);
        assert!((x0.cross(&y0).dot(&v01) - 1.as_()).abs() < 1.0e-5_f64.as_());
        let x1 = x0.scale(dtheta.sin()) + y0.scale(dtheta.cos());
        vtx2bin1.column_mut(iseg).copy_from(&x1);
    }
    vtx2bin1
}

pub fn smooth_frame<T>(
    vtx2xyz: &[T]) -> nalgebra::Matrix3xX::<T>
    where T: nalgebra::RealField + 'static + Copy,
          f64: num_traits::AsPrimitive<T>,
          usize: num_traits::AsPrimitive<T>
{
    let vtx2bin0 = crate::polyline::parallel_transport_polyline(vtx2xyz);
    match_frames_of_two_ends(vtx2xyz, &vtx2bin0)
}

pub fn normal_binormal<T>(
    vtx2xyz: &[T]) -> (nalgebra::Matrix3xX::<T>, nalgebra::Matrix3xX::<T>)
where T: nalgebra::RealField + Copy
{
    let num_vtx = vtx2xyz.len()/3;
    let mut vtx2bin = nalgebra::Matrix3xX::<T>::zeros(num_vtx);
    let mut vtx2nrm = nalgebra::Matrix3xX::<T>::zeros(num_vtx);
    for ivtx1 in 0..num_vtx {
        let ivtx0 = (ivtx1 + num_vtx - 1) % num_vtx;
        let ivtx2 = (ivtx1 + 1) % num_vtx;
        let v0 = del_geo::vec3::navec3(vtx2xyz, ivtx0);
        let v1 = del_geo::vec3::navec3(vtx2xyz, ivtx1);
        let v2 = del_geo::vec3::navec3(vtx2xyz, ivtx2);
        let v01 = v1- v0;
        let v12 = v2 - v1;
        let binormal = v12.cross(&v01);
        vtx2bin.column_mut(ivtx1).copy_from(&binormal.normalize());
        let norm = (v01 + v12).cross(&binormal);
        vtx2nrm.column_mut(ivtx1).copy_from(&norm.normalize());
    }
    (vtx2nrm,vtx2bin)
}

pub fn tube_mesh(
    vtx2xyz: &nalgebra::Matrix3xX::<f32>,
    vtx2bin: &nalgebra::Matrix3xX::<f32>,
    rad: f32) -> (Vec<usize>, Vec<f32>) {
    let n = 8;
    let dtheta = std::f32::consts::PI * 2. / n as f32;
    let num_vtx = vtx2xyz.ncols();
    let mut pnt2xyz = Vec::<f32>::new();
    for ipnt in 0..num_vtx {
        let p0 = vtx2xyz.column(ipnt).into_owned();
        let p1 = vtx2xyz.column((ipnt + 1) % num_vtx).into_owned();
        let z0 = (p1 - p0).normalize();
        let x0 = vtx2bin.column(ipnt);
        let y0 = z0.cross(&x0);
        for i in 0..n {
            let theta = dtheta * i as f32;
            let v0 = x0.scale(theta.cos()) + y0.scale(theta.sin());
            let q0 = p0 + v0.scale(rad);
            q0.iter().for_each(|&v| pnt2xyz.push(v));
        }
    }

    let mut tri2pnt = Vec::<usize>::new();
    for iseg in 0..num_vtx {
        let ipnt0 = iseg;
        let ipnt1 = (ipnt0 + 1) % num_vtx;
        for i in 0..n {
            tri2pnt.push(ipnt0 * n + i);
            tri2pnt.push(ipnt0 * n + (i + 1) % n);
            tri2pnt.push(ipnt1 * n + i);
            //
            tri2pnt.push(ipnt1 * n + (i + 1) % n);
            tri2pnt.push(ipnt1 * n + i);
            tri2pnt.push(ipnt0 * n + (i + 1) % n);
        }
    }
    (tri2pnt, pnt2xyz)
}

pub fn smooth_gradient_of_distance(
    vtx2xyz: &[f64],
    q: &nalgebra::Vector3::<f64>) -> nalgebra::Vector3::<f64>
{
    use del_geo::vec3::navec3;
    let n = vtx2xyz.len() / 3;
    let mut dd = nalgebra::Vector3::<f64>::zeros();
    for iseg in 0..n {
        let ip0 = iseg;
        let ip1 = (iseg + 1) % n;
        let (_, dd0) = del_geo::edge3::wdw_integral_of_inverse_distance_cubic(
            q,
            &navec3(vtx2xyz, ip0),
            &navec3(vtx2xyz, ip1));
        dd += dd0;
    }
    dd
}

pub fn extend_avoid_intersection(
    p0: &nalgebra::Vector3::<f64>,
    v0: &nalgebra::Vector3::<f64>,
    vtx2xyz: &[f64],
    eps: f64,
    n: usize) -> nalgebra::Vector3::<f64>
{
    let mut p1 = p0 + v0.scale(eps);
    for _i in 0..n {
        let v1 = -smooth_gradient_of_distance(vtx2xyz, &p1).normalize();
        p1 += v1.scale(eps);
    }
    p1
}

pub fn tube_mesh_avoid_intersection(
    vtx2xyz: &[f64],
    vtx2bin: &nalgebra::Matrix3xX::<f64>,
    eps: f64,
    niter: usize) -> (Vec<usize>, Vec<f64>)
{
    use del_geo::vec3::navec3;
    let n = 8;
    let dtheta = std::f64::consts::PI * 2. / n as f64;
    let num_vtx = vtx2xyz.len() / 3;
    let mut pnt2xyz = Vec::<f64>::new();
    for ipnt in 0..num_vtx {
        let p0 = navec3(vtx2xyz, ipnt);
        let p1 = navec3(vtx2xyz, (ipnt + 1) % num_vtx);
        let z0 = (p1 - p0).normalize();
        let x0 = vtx2bin.column(ipnt);
        let y0 = z0.cross(&x0);
        for i in 0..n {
            let theta = dtheta * i as f64;
            let v0 = x0.scale(theta.cos()) + y0.scale(theta.sin());
            let q0 = extend_avoid_intersection(&p0, &v0, vtx2xyz, eps, niter);
            // let q0 = p0 + v0.scale(rad);
            q0.iter().for_each(|&v| pnt2xyz.push(v));
        }
    }

    let mut tri2pnt = Vec::<usize>::new();
    for iseg in 0..num_vtx {
        let ipnt0 = iseg;
        let ipnt1 = (ipnt0 + 1) % num_vtx;
        for i in 0..n {
            tri2pnt.push(ipnt0 * n + i);
            tri2pnt.push(ipnt0 * n + (i + 1) % n);
            tri2pnt.push(ipnt1 * n + i);
            //
            tri2pnt.push(ipnt1 * n + (i + 1) % n);
            tri2pnt.push(ipnt1 * n + i);
            tri2pnt.push(ipnt0 * n + (i + 1) % n);
        }
    }
    (tri2pnt, pnt2xyz)
}

pub fn write_wavefrontobj<P: AsRef<std::path::Path>>(
    filepath: P,
    vtx2xyz: &nalgebra::Matrix3xX::<f32>) {
    use std::io::Write;
    let mut file = std::fs::File::create(filepath).expect("file not found.");
    for vtx in vtx2xyz.column_iter() {
        writeln!(file, "v {} {} {}",
                 vtx[0], vtx[1], vtx[2]).expect("fail");
    }
    write!(file, "l ").expect("fail");
    for i in 1..vtx2xyz.ncols() + 1 {
        write!(file, "{} ", i).expect("fail");
    }
    writeln!(file, "1").expect("fail");
}

pub fn distance_from_edge3(
    vtx2xyz: &[f64],
    p0: &[f64],
    p1: &[f64]) -> f64{
    assert_eq!(p0.len(),3);
    assert_eq!(p1.len(),3);
    let num_vtx = vtx2xyz.len() / 3;
    assert_eq!(vtx2xyz.len(), num_vtx*3);
    let p0 = nalgebra::Vector3::<f64>::from_row_slice(p0);
    let p1 = nalgebra::Vector3::<f64>::from_row_slice(p1);
    let mut min_dist = f64::MAX;
    for i_edge in 0..num_vtx {
        let iv0 = i_edge;
        let iv1 = (i_edge + 1) % num_vtx;
        let q0 = nalgebra::Vector3::<f64>::from_row_slice(&vtx2xyz[iv0 * 3..iv0 * 3 + 3]);
        let q1 = nalgebra::Vector3::<f64>::from_row_slice(&vtx2xyz[iv1 * 3..iv1 * 3 + 3]);
        let (dist,_,_) = del_geo::edge3::nearest_to_edge3(&p0, &p1, &q0, &q1);
        min_dist = if dist < min_dist {dist} else {min_dist};
    }
    min_dist
}


pub fn winding_number(
    vtx2xyz: &[f64],
    org: &[f64],
    dir: &[f64]) -> f64
{
    use num_traits::FloatConst;
    let org = nalgebra::Vector3::<f64>::from_row_slice(org);
    let dir = nalgebra::Vector3::<f64>::from_row_slice(dir);
    let num_vtx = vtx2xyz.len() / 3;
    assert_eq!(vtx2xyz.len(), num_vtx*3);
    let mut sum = 0.;
    for i_edge in 0..num_vtx {
        let iv0 = i_edge;
        let iv1 = (i_edge + 1) % num_vtx;
        let q0 = nalgebra::Vector3::<f64>::from_row_slice(&vtx2xyz[iv0 * 3..(iv0+1) * 3])-org;
        let q1 = nalgebra::Vector3::<f64>::from_row_slice(&vtx2xyz[iv1 * 3..(iv1+1) * 3])-org;
        let q0 = q0 - dir.scale(q0.dot(&dir));
        let q1 = q1 - dir.scale(q1.dot(&dir));
        let q0 = q0.normalize();
        let q1 = q1.normalize();
        let s = q0.cross(&q1).dot(&dir);
        let c = q0.dot(&q1);
        sum += s.atan2(c);
    }
    sum * f64::FRAC_1_PI() * 0.5
}