1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// SPDX-License-Identifier: MIT
// Copyright (c) "2023" . The DeepCausality Authors. All Rights Reserved.

use std::fmt::Debug;

use crate::prelude::{Identifiable, NumericalValue};

pub trait Observable: Debug + Identifiable {
    fn observation(&self) -> NumericalValue;
    fn observed_effect(&self) -> NumericalValue;

    fn effect_observed(
        &self,
        target_threshold: NumericalValue,
        target_effect: NumericalValue,
    ) -> bool {
        (self.observation() >= target_threshold) && (self.observed_effect() == target_effect)
    }
}

pub trait ObservableReasoning<T>
where
    T: Observable,
{
    // Compiler generated methods using macros.
    fn len(&self) -> usize;
    fn is_empty(&self) -> bool;
    fn get_all_items(&self) -> Vec<&T>;

    // Default implementations.

    fn number_observation(
        &self,
        target_threshold: NumericalValue,
        target_effect: NumericalValue,
    ) -> NumericalValue {
        self.get_all_items()
            .iter()
            .filter(|o| o.effect_observed(target_threshold, target_effect))
            .count() as NumericalValue
    }

    fn number_non_observation(
        &self,
        target_threshold: NumericalValue,
        target_effect: NumericalValue,
    ) -> NumericalValue {
        self.len() as NumericalValue - self.number_observation(target_threshold, target_effect)
    }

    fn percent_observation(
        &self,
        target_threshold: NumericalValue,
        target_effect: NumericalValue,
    ) -> NumericalValue {
        self.number_observation(target_threshold, target_effect) / self.len() as NumericalValue
        // * (100 as NumericalValue)
    }

    fn percent_non_observation(
        &self,
        target_threshold: NumericalValue,
        target_effect: NumericalValue,
    ) -> NumericalValue {
        1.0 - self.percent_observation(target_threshold, target_effect)
    }
}