debtmap 0.2.3

Code complexity and technical debt analyzer
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/bin/bash

# Parse command arguments
BEFORE_FILE=""
AFTER_FILE=""
OUTPUT_FILE=".prodigy/debtmap-validation.json"

# Parse arguments - handle both $ARGUMENTS (from Prodigy) and $@ (from command line)
if [ -n "$ARGUMENTS" ]; then
    ARGS_ARRAY=($ARGUMENTS)
else
    ARGS_ARRAY=("$@")
fi
i=0
while [ $i -lt ${#ARGS_ARRAY[@]} ]; do
    case ${ARGS_ARRAY[$i]} in
        --before)
            BEFORE_FILE="${ARGS_ARRAY[$((i+1))]}"
            i=$((i+2))
            ;;
        --after)
            AFTER_FILE="${ARGS_ARRAY[$((i+1))]}"
            i=$((i+2))
            ;;
        --output)
            OUTPUT_FILE="${ARGS_ARRAY[$((i+1))]}"
            i=$((i+2))
            ;;
        *)
            i=$((i+1))
            ;;
    esac
done

# Validate required parameters
if [ -z "$BEFORE_FILE" ] || [ -z "$AFTER_FILE" ]; then
    echo "Error: Missing required parameters"
    echo "Usage: --before <before-json> --after <after-json> [--output <output-file>]"
    mkdir -p "$(dirname "$OUTPUT_FILE")"
    echo '{"completion_percentage": 0.0, "status": "failed", "improvements": [], "remaining_issues": ["Missing required parameters"], "gaps": {}}' > "$OUTPUT_FILE"
    exit 1
fi

# Check if files exist
if [ ! -f "$BEFORE_FILE" ]; then
    echo "Error: Before file not found: $BEFORE_FILE"
    mkdir -p "$(dirname "$OUTPUT_FILE")"
    echo '{"completion_percentage": 0.0, "status": "failed", "improvements": [], "remaining_issues": ["Before file not found"], "gaps": {}}' > "$OUTPUT_FILE"
    exit 1
fi

if [ ! -f "$AFTER_FILE" ]; then
    echo "Error: After file not found: $AFTER_FILE"
    mkdir -p "$(dirname "$OUTPUT_FILE")"
    echo '{"completion_percentage": 0.0, "status": "failed", "improvements": [], "remaining_issues": ["After file not found"], "gaps": {}}' > "$OUTPUT_FILE"
    exit 1
fi

# Check for automation mode
IS_AUTOMATION=false
if [ "$PRODIGY_AUTOMATION" = "true" ] || [ "$PRODIGY_VALIDATION" = "true" ]; then
    IS_AUTOMATION=true
fi

# Only show progress in non-automation mode
if [ "$IS_AUTOMATION" = "false" ]; then
    echo "Validating debtmap improvement..."
    echo "  Before: $BEFORE_FILE"
    echo "  After: $AFTER_FILE"
    echo "  Output: $OUTPUT_FILE"
fi

# Ensure output directory exists
mkdir -p "$(dirname "$OUTPUT_FILE")"

# Python script for detailed analysis
python3 - "$BEFORE_FILE" "$AFTER_FILE" "$OUTPUT_FILE" << 'PYTHON_SCRIPT'
import json
import sys
import os
from typing import Dict, List, Any, Optional, Tuple
from pathlib import Path

def load_json(filepath: str) -> Optional[Dict]:
    """Load and parse a JSON file."""
    try:
        with open(filepath, 'r') as f:
            return json.load(f)
    except Exception as e:
        print(f"Error loading {filepath}: {e}")
        return None

def get_debt_items(data: Dict) -> List[Dict]:
    """Extract debt items from debtmap output."""
    # Handle the standard debtmap output structure
    if 'technical_debt' in data and 'debt_items' in data['technical_debt']:
        return data['technical_debt']['debt_items']
    # Alternative structures
    elif 'debt_items' in data:
        return data['debt_items']
    elif 'technical_debt' in data and 'items' in data['technical_debt']:
        return data['technical_debt']['items']
    elif 'analysis' in data and 'debt_items' in data['analysis']:
        return data['analysis']['debt_items']
    return []

def get_overall_metrics(data: Dict) -> Dict:
    """Extract overall metrics from debtmap output."""
    metrics = {
        'total_items': 0,
        'high_priority_items': 0,
        'critical_items': 0,
        'average_score': 0.0,
        'total_score': 0.0,
        'max_complexity': 0,
        'average_complexity': 0.0
    }

    debt_items = get_debt_items(data)
    if not debt_items:
        return metrics

    metrics['total_items'] = len(debt_items)

    scores = []
    complexities = []

    for item in debt_items:
        score = item.get('score', item.get('severity_score', 0))
        if isinstance(score, str):
            try:
                score = float(score)
            except:
                score = 0
        scores.append(score)

        # Count priorities
        if score >= 8:
            metrics['critical_items'] += 1
            metrics['high_priority_items'] += 1
        elif score >= 6:
            metrics['high_priority_items'] += 1

        # Extract complexity if available
        complexity = item.get('complexity', item.get('cyclomatic_complexity', 0))
        if complexity:
            complexities.append(complexity)

    if scores:
        metrics['average_score'] = sum(scores) / len(scores)
        metrics['total_score'] = sum(scores)

    if complexities:
        metrics['average_complexity'] = sum(complexities) / len(complexities)
        metrics['max_complexity'] = max(complexities)

    return metrics

def compare_debt_items(before_items: List[Dict], after_items: List[Dict]) -> Dict:
    """Compare debt items to identify improvements and regressions."""

    def item_key(item: Dict) -> str:
        """Generate a unique key for a debt item."""
        # Handle standard debtmap output structure
        location = item.get('file_path', item.get('location', item.get('file', '')))
        function = item.get('function_name', item.get('function', ''))
        issue_type = item.get('issue_type', '')
        return f"{location}:{function}:{issue_type}"

    before_map = {item_key(item): item for item in before_items}
    after_map = {item_key(item): item for item in after_items}

    resolved_items = []
    improved_items = []
    unchanged_critical = []
    new_items = []
    worsened_items = []

    # Check for resolved and improved items
    for key, before_item in before_map.items():
        if key not in after_map:
            # Item was resolved
            resolved_items.append(before_item)
        else:
            after_item = after_map[key]
            before_score = before_item.get('score', before_item.get('severity_score', 0))
            after_score = after_item.get('score', after_item.get('severity_score', 0))

            if isinstance(before_score, str):
                before_score = float(before_score) if before_score else 0
            if isinstance(after_score, str):
                after_score = float(after_score) if after_score else 0

            if after_score < before_score:
                improved_items.append({
                    'item': after_item,
                    'before_score': before_score,
                    'after_score': after_score
                })
            elif after_score > before_score:
                worsened_items.append({
                    'item': after_item,
                    'before_score': before_score,
                    'after_score': after_score
                })
            elif before_score >= 8:
                # Critical item unchanged
                unchanged_critical.append(before_item)

    # Check for new items
    for key, after_item in after_map.items():
        if key not in before_map:
            new_items.append(after_item)

    return {
        'resolved': resolved_items,
        'improved': improved_items,
        'unchanged_critical': unchanged_critical,
        'new': new_items,
        'worsened': worsened_items
    }

def calculate_improvement_score(before_metrics: Dict, after_metrics: Dict, comparison: Dict) -> Tuple[float, List[str], List[str], Dict]:
    """Calculate improvement score and identify gaps."""
    improvements = []
    remaining_issues = []
    gaps = {}

    # Weight factors for scoring
    weights = {
        'resolved_critical': 0.4,
        'overall_improvement': 0.3,
        'complexity_reduction': 0.2,
        'no_regression': 0.1
    }

    scores = {}

    # 1. Resolved critical items
    total_critical_before = before_metrics['critical_items']
    resolved_critical = len([item for item in comparison['resolved']
                            if item.get('score', item.get('severity_score', 0)) >= 8])

    if total_critical_before > 0:
        scores['resolved_critical'] = (resolved_critical / total_critical_before) * 100
        if resolved_critical > 0:
            improvements.append(f"Resolved {resolved_critical} critical debt items")
    else:
        scores['resolved_critical'] = 100 if after_metrics['critical_items'] == 0 else 0

    # 2. Overall score improvement
    if before_metrics['average_score'] > 0:
        score_reduction = (before_metrics['average_score'] - after_metrics['average_score']) / before_metrics['average_score']
        scores['overall_improvement'] = max(0, score_reduction * 100)

        if score_reduction > 0.1:
            improvements.append(f"Reduced average debt score by {score_reduction*100:.1f}%")
    else:
        scores['overall_improvement'] = 100 if after_metrics['average_score'] == 0 else 0

    # 3. Complexity reduction
    if before_metrics['average_complexity'] > 0:
        complexity_reduction = (before_metrics['average_complexity'] - after_metrics['average_complexity']) / before_metrics['average_complexity']
        scores['complexity_reduction'] = max(0, complexity_reduction * 100)

        if complexity_reduction > 0.1:
            improvements.append(f"Reduced average complexity by {complexity_reduction*100:.1f}%")
    else:
        scores['complexity_reduction'] = 100 if after_metrics['average_complexity'] == 0 else 50

    # 4. No regression penalty
    new_critical = len([item for item in comparison['new']
                       if item.get('score', item.get('severity_score', 0)) >= 8])
    worsened_count = len(comparison['worsened'])

    if new_critical > 0 or worsened_count > 0:
        scores['no_regression'] = 0
        if new_critical > 0:
            remaining_issues.append(f"{new_critical} new critical debt items introduced")
        if worsened_count > 0:
            remaining_issues.append(f"{worsened_count} debt items worsened")
    else:
        scores['no_regression'] = 100

    # Calculate weighted average
    total_score = sum(scores[key] * weights[key] for key in weights)

    # Document improvements
    if len(comparison['resolved']) > 0:
        improvements.append(f"Resolved {len(comparison['resolved'])} debt items")

    if len(comparison['improved']) > 0:
        improvements.append(f"Improved {len(comparison['improved'])} debt items")

    # Document remaining issues and gaps
    for item in comparison['unchanged_critical']:
        # Handle standard debtmap output structure
        location = item.get('file_path', item.get('location', item.get('file', 'unknown')))
        function = item.get('function_name', item.get('function', 'unknown'))
        line_number = item.get('line_number', item.get('line', ''))
        score = item.get('score', item.get('severity_score', 0))
        issue_type = item.get('issue_type', 'Unknown issue')

        gap_key = f"critical_debt_{location.replace('/', '_').replace('.', '_')}_{function}"
        gaps[gap_key] = {
            'description': f"Critical debt item: {issue_type}",
            'location': f"{location}:{function}:{line_number}" if line_number else f"{location}:{function}",
            'severity': 'critical',
            'suggested_fix': item.get('recommendation', 'Apply functional programming patterns to reduce complexity'),
            'original_score': score,
            'current_score': score
        }

        remaining_issues.append(f"Critical debt in {location}:{function}")

    # Check for insufficient improvement
    if after_metrics['high_priority_items'] > 0:
        remaining_issues.append(f"{after_metrics['high_priority_items']} high-priority items remain")

    return total_score, improvements, remaining_issues, gaps

def main():
    # Get file paths from command-line arguments
    if len(sys.argv) < 4:
        print("Error: Missing file paths")
        sys.exit(1)

    before_file = sys.argv[1]
    after_file = sys.argv[2]
    output_file = sys.argv[3]

    # Load JSON files
    before_data = load_json(before_file)
    after_data = load_json(after_file)

    if not before_data or not after_data:
        result = {
            'completion_percentage': 0.0,
            'status': 'failed',
            'improvements': [],
            'remaining_issues': ['Failed to load debtmap JSON files'],
            'gaps': {}
        }
        with open(output_file, 'w') as f:
            json.dump(result, f, indent=2)
        return

    # Extract metrics
    before_metrics = get_overall_metrics(before_data)
    after_metrics = get_overall_metrics(after_data)

    # Get debt items for comparison
    before_items = get_debt_items(before_data)
    after_items = get_debt_items(after_data)

    # Compare items
    comparison = compare_debt_items(before_items, after_items)

    # Calculate improvement score
    improvement_score, improvements, remaining_issues, gaps = calculate_improvement_score(
        before_metrics, after_metrics, comparison
    )

    # Determine status
    if improvement_score >= 75:
        status = 'complete'
    elif improvement_score >= 40:
        status = 'incomplete'
    else:
        status = 'insufficient'

    # Build result
    result = {
        'completion_percentage': round(improvement_score, 1),
        'status': status,
        'improvements': improvements,
        'remaining_issues': remaining_issues,
        'gaps': gaps,
        'before_summary': {
            'total_items': before_metrics['total_items'],
            'high_priority_items': before_metrics['high_priority_items'],
            'critical_items': before_metrics['critical_items'],
            'average_score': round(before_metrics['average_score'], 2),
            'average_complexity': round(before_metrics['average_complexity'], 2)
        },
        'after_summary': {
            'total_items': after_metrics['total_items'],
            'high_priority_items': after_metrics['high_priority_items'],
            'critical_items': after_metrics['critical_items'],
            'average_score': round(after_metrics['average_score'], 2),
            'average_complexity': round(after_metrics['average_complexity'], 2)
        }
    }

    # Write result to output file
    Path(output_file).parent.mkdir(parents=True, exist_ok=True)
    with open(output_file, 'w') as f:
        json.dump(result, f, indent=2)

    # Print summary (not JSON) only in non-automation mode
    is_automation = os.environ.get('PRODIGY_AUTOMATION') == 'true' or \
                    os.environ.get('PRODIGY_VALIDATION') == 'true'

    if not is_automation:
        print(f"\nValidation complete: {improvement_score:.1f}% improvement")
        print(f"Status: {status}")
        if improvements:
            print("\nImprovements made:")
            for imp in improvements[:3]:
                print(f"  ✓ {imp}")
        if remaining_issues and improvement_score < 75:
            print("\nRemaining issues:")
            for issue in remaining_issues[:3]:
                print(f"  ✗ {issue}")
        print(f"\nValidation result written to: {output_file}")

if __name__ == '__main__':
    main()
PYTHON_SCRIPT

# Exit successfully (validation result is in the JSON file)
exit 0