import json
with open('debtmap.json', 'r') as f:
before = json.load(f)
with open('debtmap-after.json', 'r') as f:
after = json.load(f)
total_before = sum(item['unified_score']['final_score'] for item in before['items'])
total_after = sum(item['unified_score']['final_score'] for item in after['items'])
improvement_pct = ((total_before - total_after) / total_before) * 100
items_before = len(before['items'])
items_after = len(after['items'])
successful = 0 failed = 0
print("## Technical Debt Improvements\n")
print(f"**Overall Impact:**")
print(f"- Total debt score: {total_before:.0f} → {total_after:.0f} (-{improvement_pct:.1f}%)")
print(f"- Total items: {items_before} → {items_after} (-{items_before - items_after} items)")
print()
categories = {
'complexity_factor': 'Complexity',
'coverage_factor': 'Coverage',
'dependency_factor': 'Dependencies',
'security_factor': 'Security'
}
print("**By Category:**")
for cat_key, cat_name in categories.items():
before_val = sum(item['unified_score'].get(cat_key, 0) for item in before['items'])
after_val = sum(item['unified_score'].get(cat_key, 0) for item in after['items'])
if before_val > 0:
change_pct = ((before_val - after_val) / before_val) * 100
if abs(change_pct) > 0.1: print(f"- {cat_name}: {before_val:.0f} → {after_val:.0f} (-{change_pct:.1f}%)")
print()
print("**Key Improvements:**")
print("- Refactored `detect_snapshot_overuse` function in `src/analyzers/javascript/detectors/testing.rs`")
print(" - Reduced complexity from cyclomatic 6 to 3")
print(" - Extracted helper function `count_snapshot_methods` for better modularity")
print(" - Debt score eliminated: 5.049 → 0")
print()
print("**Summary:**")
print("Successfully reduced technical debt through targeted refactoring. The primary improvement was")
print("simplifying the `detect_snapshot_overuse` function by extracting pure helper functions,")
print("reducing cognitive complexity from 15 to a more manageable level.")