db-keystore 0.4.0

SQLite-backed credential store for the `keyring-core` API
Documentation

db-keystore

Platform-independent, SQLite-backed credential store for the keyring-core API, with optional encryption-at-rest. Built with turso.

This crate implements keyring-core::CredentialStoreApi and CredentialApi.

There is a binary maintenance tool for adjusting db settings and rotating encryption keys.

Features

  • Rust-native SQLite implementation by turso, with open source encryption.
  • WAL + busy timeout for safety in multi-process environments.
  • Optional uniqueness enforcement on (service, user).
  • UUID and optional comment attributes exposed via the credential API.
  • UUIDs created with format v7, allowing sort-by-time for ambiguous entries.
  • Search with regex filters over service, user, uuid, and comment.
  • Several Examples

Configuration

Keystore settings can be configured either with modifiers (string key-value pairs, for use with the keyring crate), or struct DbKeyStoreConfig.

Modifier keys (all optional):

  • path: path to the SQLite database file. Defaults to $XDG_STATE_HOME/keystore.db if $XDG_STATE_HOME is defined, or $HOME/.local/state/keystore.db
  • allow-ambiguity (alias allow_ambiguity): "true" or "false". Default false. Allows storage of more than one match for the pair (service,user). Individual pairs can be identified by the unique uuid or comment. When false, a UNIQUE index is created to enforce uniqueness.
  • encryption-cipher (alias cipher): Cipher name (requires hexkey). See below for list of supported ciphers.
  • encryption-hexkey (alias hexkey): Encryption key as 64 hex digits (256-bit key) or 32 hex digits (128-bit key) (requires cipher).
  • index-always (alias index_always): "true" or "false". Default false. Adds an index on (service,user) even when allow-ambiguity is true.
  • vfs: Optional VFS selection ("memory", "syscall", or "io_uring").
    • "memory": In-memory database. Data is entirely in RAM, and data is lost when process exits. When vfs=memory, path and encryption options are ignored.
    • "syscall": Generic syscall backend. Uses standard POSIX system calls for file I/O. This is the most portable mode.
    • "io_uring": Linux io_uring backend. Uses Linux's modern async I/O interface for better performance. Only available on Linux.

Entry modifiers supported by build:

  • uuid: Explicit credential UUID (allows creating ambiguous entries when allowed).
  • comment: Initial comment value stored with the credential.

Examples

Configure and open

use db_keystore::{DbKeyStore, DbKeyStoreConfig, EncryptionOpts};
use keyring_core::{Result, api::CredentialStoreApi};
use std::{collections::HashMap, path::Path, sync::Arc};

/// Open in default location (~/.local/state/keystore.db)
fn open_db() -> Result<Arc<DbKeyStore>> {
    let config = DbKeyStoreConfig::default();
    DbKeyStore::new(config)
}

/// Open encrypted database in custom folder
fn open_encrypted(dir: &Path, hexkey: &str) -> Result<Arc<DbKeyStore>> {
    let config = DbKeyStoreConfig {
        path: dir.join("keystore.db"),
        encryption_opts: Some(EncryptionOpts::new("aegis256", hexkey)),
        ..Default::default()
    };
    DbKeyStore::new(config)
}

/// Open in-memory db
fn open_in_memory() -> Result<Arc<DbKeyStore>> {
    let config = DbKeyStoreConfig {
        vfs: Some("memory".to_string()),
        ..Default::default()
    };
    DbKeyStore::new(config)
}

Save and lookup secrets

use db_keystore::{DbKeyStore, DbKeyStoreConfig, EncryptionOpts};
use keyring_core::{Entry, Result, api::CredentialStoreApi};
use std::{collections::HashMap, sync::Arc};

fn save_password(db: Arc<DbKeyStore>, service: &str, user: &str, password: &str) -> Result<()> {
    // use `set_password` to store secrets that are utf8 strings
    // service and user must be non-empty
    let entry = db.build(service, user, None)?;
    entry.set_password(password)
}

fn save_secret(db: Arc<DbKeyStore>, service: &str, user: &str, secret: &[u8]) -> Result<()> {
    // use `set_secret` to store any binary secret (up to 64KiB)
    // service and user must be non-empty
    let bin_entry = db.build(service, user, None)?;
    bin_entry.set_secret(secret)
}

/// Verify secret. Returns true if there is a matching password for the service+user
fn verify_secret(db: Arc<DbKeyStore>, service: &str, user: &str, expected: &[u8]) -> Result<bool> {
    let spec = HashMap::from([("service", service), ("user", user)]);
    let results = db.search(&spec)?;
    // check all entries in case db has allow_ambiguity
    for entry in results.iter() {
        if entry.get_secret()? == expected {
            return Ok(true);
        }
    }
    Ok(false)
}

/// Search using optional regex filters. Returns matches
fn search(
    db: Arc<DbKeyStore>, service_re: Option<&str>, user_re: Option<&str>,
    uuid_re: Option<&str>, comment_re: Option<&str>,
) -> Result<Vec<Entry>> {
    let mut spec = HashMap::new();
    // `search` supports keys: `service`, `user`, `uuid`, `comment`.
    if let Some(service) = service_re { spec.insert("service", service); }
    if let Some(user) = user_re { spec.insert("user", user); }
    if let Some(uuid) = uuid_re { spec.insert("uuid", uuid); }
    if let Some(comment) = comment_re { spec.insert("comment", comment); }
    db.search(&spec)
}

Changing database settings

If you decide to change the database configuration after the database has been created, a bit of maintenance with the db-keystore maintenance tool is required.

Changing encryption

To change database encryption (adding encryption, removing encryption, rotating the key, or changing the cipher), use db-keystore rekey

Changing allow_ambiguous from false to true

To change a database to allow ambiguous entries, Use db-keystore allow-ambiguous to remove the unique index. Then the db can be opened with DbKeyStoreConfig::allow_ambiguous: true.

Changing allow_ambiguous from true to false

To change a database to disable ambiguity, you must first ensure there are no ambiguous entries in the keystore, or the creation of the unique index will fail.

List the ambiguous entries with db-keystore list --ambiguous and use db-keystore delete ... to remove conflicts. When there are no more results from db-keystore list --ambiguous, it is safe to open the database with DbKeyStoreConfig::allow_ambiguous: false.

Maintenance tool

Install with cargo install db-keystore (or from source cargo install --path .)

# Global args
#  --path PATH      # path to keystore. defaults to ~/.local/state/keystore.db
#  --cipher CIPHER  # encryption cipher
#  --hexkey HEXKEY  # encryption key
#  --json           # output list commands in json instead of tsv


# list credentials in store (does not display secrets)
db-keystore list

# list ambiguous credentials (non-unique sets of (service,user))
db-keystore list --ambiguous

# delete one or more credentials in keystore
db-keystore delete [--service SERVICE] [--user USER] [--uuid UUID]

# rotate keys (`rekey` can also be used to add or remove encryption)
db-keystore rekey --path OLD_PATH --cipher OLD_CIPHER --hexkey OLD_KEY \
                  --output NEW_PATH.db --new-cipher NEW_CIPHER --new-hexkey NEW_KEY

Encryption

Supported ciphers

aegis256 is recommended for most applications. See Turso Database Encryption for more information about available ciphers and recommendations.

Key length Aegis AES
128-bit aegis128laegis128x2aegis128x4 aes128gcm (AES-128-GCM)
256-bit aegis256aegis256x2aegis256x4 aes256gcm (AES-256-GCM)

Key generation

# generate 256-bit key as 64 hex digits
openssl rand -hex 32
# generate 128-bit key as 32 hex digits
openssl rand -hex 16
/// generate 256-bit key as 64 hex digits
fn generate_key() -> String {
    use rand::RngCore;
    let mut key = [0u8; 32];
    rand::rng().fill_bytes(&mut key);
    hex::encode(key)
}

Important: Store your encryption key securely. If you lose the key, your encrypted data cannot be recovered.

Encryption Security

The ciphers are considered strong modern AEAD-based ciphers. The database is encrypted at the page level (default page size 4096 bytes), where each page has a unique nonce. The first 100 bytes, containing a Turso version header and sqlite metadata, are not encrypted.

When using this or any encrypted storage, keep in mind that the greatest risks for stored secrets are usually related to key generation and key management:

  • Low entropy keys can enable brute-force attacks.
  • Reusing the same key across databases increases the blast radius if a key leaks.
  • Generating keys from user input without a strong KDF (Argon2/scrypt) weakens security.
  • Storing encryption keys on disk with the database (or leaked in logs or environment) diminishes the benefits of encryption.

Release Notes

See CHANGELOG for latest changes.

See Issues for known issues.

Schema version

Schema version stored to enable future schema migrations.

Length limits

Secrets are limited to 65536 bytes, and service and user names are limited to 1024 characters each. These limits are somewhat arbitrary, sanity checks to prevent accidental blow-up of the database. If you need longer keys, submit an issue, and we can increase the length or make it a config setting.

Ambiguity and database size

When allow_ambiguity is false (the default), the pair (service,user) is required to be unique and enforced in the database:

  • a UNIQUE index is created on the service, user columns
  • UPSERT is used for set_secret and set_password.
  • operations return Error::Ambiguous if multiple credentials match a single (service, user) pair.

If allow_ambiguity is true, the UNIQUE index is not created. If you expect the keystore to hold ~1000 or more secrets, consider setting DbKeyStoreConfig::index_always to create an index on (service,user) to improve lookup performance. The index isn't normally created because it can roughly double the size of the database, and for small keystores doesn't make a significant difference for latency. This is an edge case, as allow_ambiguity is default false and does use an index. There are tradeoffs - benchmark on your target platform.

Testing

# Run unit tests
# Performance and stress tests skipped to avoid extra wear on SSDs
cargo test -- --nocapture

# Include performance tests.
# To adjust number of iterations, search for "count =" in tests/stress.rs
PERF_INDEX=1 cargo test -- --nocapture

# Include stress tests with multi-process locking and transactions.
# To adjust duration of stress test, change DEFAULT_STRESS_SECONDS
cargo test -- --nocapture --ignored

License

MIT OR Apache-2.0