datasynth-eval 0.1.0

Evaluation framework for synthetic financial data quality and coherence
Documentation

datasynth-eval

Evaluation framework for synthetic financial data quality and coherence.

Overview

datasynth-eval provides automated quality assessment for generated data:

  • Statistical Evaluation: Benford's Law compliance, distribution analysis
  • Coherence Checking: Balance verification, document chain integrity
  • Intercompany Validation: IC matching and elimination verification
  • Uniqueness Analysis: Duplicate detection across datasets

Evaluation Categories

Category Description
Statistical Benford's Law, amount distributions, temporal patterns
Coherence Trial balance, subledger reconciliation, FX consistency
Intercompany IC matching rates, elimination completeness
Uniqueness Document ID collisions, duplicate transaction detection

Usage

use datasynth_eval::{Evaluator, EvaluationConfig};

let evaluator = Evaluator::new(EvaluationConfig::default());
let report = evaluator.evaluate(&generated_data)?;

println!("Benford compliance: {:.2}%", report.benford_score * 100.0);
println!("Balance coherence: {}", report.balance_check.passed);

Evaluation Report

The evaluation produces a comprehensive report including:

  • Pass/Fail Status: Overall and per-category
  • Scores: Numerical scores for statistical measures
  • Warnings: Potential issues that don't fail validation
  • Details: Specific findings and recommendations

License

Apache-2.0 - See LICENSE for details.