datafusion 48.0.1

DataFusion is an in-memory query engine that uses Apache Arrow as the memory model
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

extern crate arrow;
#[macro_use]
extern crate criterion;
extern crate datafusion;

mod data_utils;

use crate::criterion::Criterion;
use arrow::array::{ArrayRef, RecordBatch};
use arrow::datatypes::{DataType, Field, Fields, Schema};
use criterion::Bencher;
use datafusion::datasource::MemTable;
use datafusion::execution::context::SessionContext;
use datafusion_common::ScalarValue;
use datafusion_expr::col;
use itertools::Itertools;
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::PathBuf;
use std::sync::Arc;
use test_utils::tpcds::tpcds_schemas;
use test_utils::tpch::tpch_schemas;
use test_utils::TableDef;
use tokio::runtime::Runtime;

const BENCHMARKS_PATH_1: &str = "../../benchmarks/";
const BENCHMARKS_PATH_2: &str = "./benchmarks/";
const CLICKBENCH_DATA_PATH: &str = "data/hits_partitioned/";

/// Create a logical plan from the specified sql
fn logical_plan(ctx: &SessionContext, rt: &Runtime, sql: &str) {
    criterion::black_box(rt.block_on(ctx.sql(sql)).unwrap());
}

/// Create a physical ExecutionPlan (by way of logical plan)
fn physical_plan(ctx: &SessionContext, rt: &Runtime, sql: &str) {
    criterion::black_box(rt.block_on(async {
        ctx.sql(sql)
            .await
            .unwrap()
            .create_physical_plan()
            .await
            .unwrap()
    }));
}

/// Create schema with the specified number of columns
fn create_schema(column_prefix: &str, num_columns: usize) -> Schema {
    let fields: Fields = (0..num_columns)
        .map(|i| Field::new(format!("{column_prefix}{i}"), DataType::Int32, true))
        .collect();
    Schema::new(fields)
}

fn create_table_provider(column_prefix: &str, num_columns: usize) -> Arc<MemTable> {
    let schema = Arc::new(create_schema(column_prefix, num_columns));
    MemTable::try_new(schema, vec![vec![]])
        .map(Arc::new)
        .unwrap()
}

fn create_context() -> SessionContext {
    let ctx = SessionContext::new();
    ctx.register_table("t1", create_table_provider("a", 200))
        .unwrap();
    ctx.register_table("t2", create_table_provider("b", 200))
        .unwrap();
    ctx.register_table("t700", create_table_provider("c", 700))
        .unwrap();
    ctx.register_table("t1000", create_table_provider("d", 1000))
        .unwrap();
    ctx
}

/// Register the table definitions as a MemTable with the context and return the
/// context
fn register_defs(ctx: SessionContext, defs: Vec<TableDef>) -> SessionContext {
    defs.iter().for_each(|TableDef { name, schema }| {
        ctx.register_table(
            name,
            Arc::new(MemTable::try_new(Arc::new(schema.clone()), vec![vec![]]).unwrap()),
        )
        .unwrap();
    });
    ctx
}

fn register_clickbench_hits_table(rt: &Runtime) -> SessionContext {
    let ctx = SessionContext::new();

    // use an external table for clickbench benchmarks
    let path =
        if PathBuf::from(format!("{BENCHMARKS_PATH_1}{CLICKBENCH_DATA_PATH}")).exists() {
            format!("{BENCHMARKS_PATH_1}{CLICKBENCH_DATA_PATH}")
        } else {
            format!("{BENCHMARKS_PATH_2}{CLICKBENCH_DATA_PATH}")
        };

    let sql = format!("CREATE EXTERNAL TABLE hits STORED AS PARQUET LOCATION '{path}'");

    rt.block_on(ctx.sql(&sql)).unwrap();

    let count =
        rt.block_on(async { ctx.table("hits").await.unwrap().count().await.unwrap() });
    assert!(count > 0);
    ctx
}

/// Target of this benchmark: control that placeholders replacing does not get slower,
/// if the query does not contain placeholders at all.
fn benchmark_with_param_values_many_columns(
    ctx: &SessionContext,
    rt: &Runtime,
    b: &mut Bencher,
) {
    const COLUMNS_NUM: usize = 200;
    let mut aggregates = String::new();
    for i in 0..COLUMNS_NUM {
        if i > 0 {
            aggregates.push_str(", ");
        }
        aggregates.push_str(format!("MAX(a{i})").as_str());
    }
    // SELECT max(attr0), ..., max(attrN) FROM t1.
    let query = format!("SELECT {aggregates} FROM t1");
    let statement = ctx.state().sql_to_statement(&query, "Generic").unwrap();
    let plan =
        rt.block_on(async { ctx.state().statement_to_plan(statement).await.unwrap() });
    b.iter(|| {
        let plan = plan.clone();
        criterion::black_box(plan.with_param_values(vec![ScalarValue::from(1)]).unwrap());
    });
}

/// Registers a table like this:
/// c0,c1,c2...,c99
/// 0,100...9900
/// 0,200...19800
/// 0,300...29700
fn register_union_order_table(ctx: &SessionContext, num_columns: usize, num_rows: usize) {
    // ("c0", [0, 0, ...])
    // ("c1": [100, 200, ...])
    // etc
    let iter = (0..num_columns).map(|i| i as u64).map(|i| {
        let array: ArrayRef = Arc::new(arrow::array::UInt64Array::from_iter_values(
            (0..num_rows)
                .map(|j| j as u64 * 100 + i)
                .collect::<Vec<_>>(),
        ));
        (format!("c{i}"), array)
    });
    let batch = RecordBatch::try_from_iter(iter).unwrap();
    let schema = batch.schema();
    let partitions = vec![vec![batch]];

    // tell DataFusion that the table is sorted by all columns
    let sort_order = (0..num_columns)
        .map(|i| col(format!("c{i}")).sort(true, true))
        .collect::<Vec<_>>();

    // create the table
    let table = MemTable::try_new(schema, partitions)
        .unwrap()
        .with_sort_order(vec![sort_order]);

    ctx.register_table("t", Arc::new(table)).unwrap();
}

/// return a query like
/// ```sql
/// select c1, null as c2, ... null as cn from t ORDER BY c1
///   UNION ALL
/// select null as c1, c2, ... null as cn from t ORDER BY c2
/// ...
/// select null as c1, null as c2, ... cn from t ORDER BY cn
///  ORDER BY c1, c2 ... CN
/// ```
fn union_orderby_query(n: usize) -> String {
    let mut query = String::new();
    for i in 0..n {
        if i != 0 {
            query.push_str("\n  UNION ALL \n");
        }
        let select_list = (0..n)
            .map(|j| {
                if i == j {
                    format!("c{j}")
                } else {
                    format!("null as c{j}")
                }
            })
            .collect::<Vec<_>>()
            .join(", ");
        query.push_str(&format!("(SELECT {select_list} FROM t ORDER BY c{i})"));
    }
    query.push_str(&format!(
        "\nORDER BY {}",
        (0..n)
            .map(|i| format!("c{i}"))
            .collect::<Vec<_>>()
            .join(", ")
    ));
    query
}

fn criterion_benchmark(c: &mut Criterion) {
    // verify that we can load the clickbench data prior to running the benchmark
    if !PathBuf::from(format!("{BENCHMARKS_PATH_1}{CLICKBENCH_DATA_PATH}")).exists()
        && !PathBuf::from(format!("{BENCHMARKS_PATH_2}{CLICKBENCH_DATA_PATH}")).exists()
    {
        panic!("benchmarks/data/hits_partitioned/ could not be loaded. Please run \
         'benchmarks/bench.sh data clickbench_partitioned' prior to running this benchmark")
    }

    let ctx = create_context();
    let rt = Runtime::new().unwrap();

    // Test simplest
    // https://github.com/apache/datafusion/issues/5157
    c.bench_function("logical_select_one_from_700", |b| {
        b.iter(|| logical_plan(&ctx, &rt, "SELECT c1 FROM t700"))
    });

    // Test simplest
    // https://github.com/apache/datafusion/issues/5157
    c.bench_function("physical_select_one_from_700", |b| {
        b.iter(|| physical_plan(&ctx, &rt, "SELECT c1 FROM t700"))
    });

    // Test simplest
    c.bench_function("logical_select_all_from_1000", |b| {
        b.iter(|| logical_plan(&ctx, &rt, "SELECT * FROM t1000"))
    });

    // Test simplest
    c.bench_function("physical_select_all_from_1000", |b| {
        b.iter(|| physical_plan(&ctx, &rt, "SELECT * FROM t1000"))
    });

    c.bench_function("logical_trivial_join_low_numbered_columns", |b| {
        b.iter(|| {
            logical_plan(
                &ctx,
                &rt,
                "SELECT t1.a2, t2.b2  \
                 FROM t1, t2 WHERE a1 = b1",
            )
        })
    });

    c.bench_function("logical_trivial_join_high_numbered_columns", |b| {
        b.iter(|| {
            logical_plan(
                &ctx,
                &rt,
                "SELECT t1.a99, t2.b99  \
                 FROM t1, t2 WHERE a199 = b199",
            )
        })
    });

    c.bench_function("logical_aggregate_with_join", |b| {
        b.iter(|| {
            logical_plan(
                &ctx,
                &rt,
                "SELECT t1.a99, MIN(t2.b1), MAX(t2.b199), AVG(t2.b123), COUNT(t2.b73)  \
                 FROM t1 JOIN t2 ON t1.a199 = t2.b199 GROUP BY t1.a99",
            )
        })
    });

    c.bench_function("physical_select_aggregates_from_200", |b| {
        let mut aggregates = String::new();
        for i in 0..200 {
            if i > 0 {
                aggregates.push_str(", ");
            }
            aggregates.push_str(format!("MAX(a{i})").as_str());
        }
        let query = format!("SELECT {aggregates} FROM t1");
        b.iter(|| {
            physical_plan(&ctx, &rt, &query);
        });
    });

    // Benchmark for Physical Planning Joins
    c.bench_function("physical_join_consider_sort", |b| {
        b.iter(|| {
            physical_plan(
                &ctx,
                &rt,
                "SELECT t1.a7, t2.b8  \
                 FROM t1, t2 WHERE a7 = b7 \
                 ORDER BY a7",
            );
        });
    });

    c.bench_function("physical_theta_join_consider_sort", |b| {
        b.iter(|| {
            physical_plan(
                &ctx,
                &rt,
                "SELECT t1.a7, t2.b8  \
                 FROM t1, t2 WHERE a7 < b7 \
                 ORDER BY a7",
            );
        });
    });

    c.bench_function("physical_many_self_joins", |b| {
        b.iter(|| {
            physical_plan(
                &ctx,
                &rt,
                "SELECT ta.a9, tb.a10, tc.a11, td.a12, te.a13, tf.a14 \
                 FROM t1 AS ta, t1 AS tb, t1 AS tc, t1 AS td, t1 AS te, t1 AS tf \
                 WHERE ta.a9 = tb.a10 AND tb.a10 = tc.a11 AND tc.a11 = td.a12 AND \
                 td.a12 = te.a13 AND te.a13 = tf.a14",
            );
        });
    });

    c.bench_function("physical_unnest_to_join", |b| {
        b.iter(|| {
            physical_plan(
                &ctx,
                &rt,
                "SELECT t1.a7  \
                 FROM t1 WHERE a7 = (SELECT b8 FROM t2)",
            );
        });
    });

    c.bench_function("physical_intersection", |b| {
        b.iter(|| {
            physical_plan(
                &ctx,
                &rt,
                "SELECT t1.a7 FROM t1  \
                 INTERSECT SELECT t2.b8 FROM t2",
            );
        });
    });
    // these two queries should be equivalent
    c.bench_function("physical_join_distinct", |b| {
        b.iter(|| {
            logical_plan(
                &ctx,
                &rt,
                "SELECT DISTINCT t1.a7  \
                 FROM t1, t2 WHERE t1.a7 = t2.b8",
            );
        });
    });

    // -- Sorted Queries --
    register_union_order_table(&ctx, 100, 1000);

    // this query has many expressions in its sort order so stresses
    // order equivalence validation
    c.bench_function("physical_sorted_union_orderby", |b| {
        // SELECT ... UNION ALL ...
        let query = union_orderby_query(20);
        b.iter(|| physical_plan(&ctx, &rt, &query))
    });

    // --- TPC-H ---

    let tpch_ctx = register_defs(SessionContext::new(), tpch_schemas());

    let tpch_queries = [
        "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11", "q12", "q13",
        "q14", // "q15", q15 has multiple SQL statements which is not supported
        "q16", "q17", "q18", "q19", "q20", "q21", "q22",
    ];

    let benchmarks_path = if PathBuf::from(BENCHMARKS_PATH_1).exists() {
        BENCHMARKS_PATH_1
    } else {
        BENCHMARKS_PATH_2
    };

    for q in tpch_queries {
        let sql =
            std::fs::read_to_string(format!("{benchmarks_path}queries/{q}.sql")).unwrap();
        c.bench_function(&format!("physical_plan_tpch_{q}"), |b| {
            b.iter(|| physical_plan(&tpch_ctx, &rt, &sql))
        });
    }

    let all_tpch_sql_queries = tpch_queries
        .iter()
        .map(|q| {
            std::fs::read_to_string(format!("{benchmarks_path}queries/{q}.sql")).unwrap()
        })
        .collect::<Vec<_>>();

    c.bench_function("physical_plan_tpch_all", |b| {
        b.iter(|| {
            for sql in &all_tpch_sql_queries {
                physical_plan(&tpch_ctx, &rt, sql)
            }
        })
    });

    // c.bench_function("logical_plan_tpch_all", |b| {
    //     b.iter(|| {
    //         for sql in &all_tpch_sql_queries {
    //             logical_plan(&tpch_ctx, sql)
    //         }
    //     })
    // });

    // --- TPC-DS ---

    let tpcds_ctx = register_defs(SessionContext::new(), tpcds_schemas());
    let tests_path = if PathBuf::from("./tests/").exists() {
        "./tests/"
    } else {
        "datafusion/core/tests/"
    };

    let raw_tpcds_sql_queries = (1..100)
        .map(|q| std::fs::read_to_string(format!("{tests_path}tpc-ds/{q}.sql")).unwrap())
        .collect::<Vec<_>>();

    // some queries have multiple statements
    let all_tpcds_sql_queries = raw_tpcds_sql_queries
        .iter()
        .flat_map(|sql| sql.split(';').filter(|s| !s.trim().is_empty()))
        .collect::<Vec<_>>();

    c.bench_function("physical_plan_tpcds_all", |b| {
        b.iter(|| {
            for sql in &all_tpcds_sql_queries {
                physical_plan(&tpcds_ctx, &rt, sql)
            }
        })
    });

    // c.bench_function("logical_plan_tpcds_all", |b| {
    //     b.iter(|| {
    //         for sql in &all_tpcds_sql_queries {
    //             logical_plan(&tpcds_ctx, sql)
    //         }
    //     })
    // });

    // -- clickbench --

    let queries_file =
        File::open(format!("{benchmarks_path}queries/clickbench/queries.sql")).unwrap();
    let extended_file =
        File::open(format!("{benchmarks_path}queries/clickbench/extended.sql")).unwrap();

    let clickbench_queries: Vec<String> = BufReader::new(queries_file)
        .lines()
        .chain(BufReader::new(extended_file).lines())
        .map(|l| l.expect("Could not parse line"))
        .collect_vec();

    let clickbench_ctx = register_clickbench_hits_table(&rt);

    // for (i, sql) in clickbench_queries.iter().enumerate() {
    //     c.bench_function(&format!("logical_plan_clickbench_q{}", i + 1), |b| {
    //         b.iter(|| logical_plan(&clickbench_ctx, sql))
    //     });
    // }

    for (i, sql) in clickbench_queries.iter().enumerate() {
        c.bench_function(&format!("physical_plan_clickbench_q{}", i + 1), |b| {
            b.iter(|| physical_plan(&clickbench_ctx, &rt, sql))
        });
    }

    // c.bench_function("logical_plan_clickbench_all", |b| {
    //     b.iter(|| {
    //         for sql in &clickbench_queries {
    //             logical_plan(&clickbench_ctx, sql)
    //         }
    //     })
    // });

    c.bench_function("physical_plan_clickbench_all", |b| {
        b.iter(|| {
            for sql in &clickbench_queries {
                physical_plan(&clickbench_ctx, &rt, sql)
            }
        })
    });

    c.bench_function("with_param_values_many_columns", |b| {
        benchmark_with_param_values_many_columns(&ctx, &rt, b);
    });
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);