use std::sync::Arc;
use crate::ScalarFunctionExpr;
use crate::{
expressions::{self, binary, like, similar_to, Column, Literal},
PhysicalExpr,
};
use arrow::datatypes::Schema;
use datafusion_common::config::ConfigOptions;
use datafusion_common::{
exec_err, not_impl_err, plan_err, DFSchema, Result, ScalarValue, ToDFSchema,
};
use datafusion_expr::execution_props::ExecutionProps;
use datafusion_expr::expr::{
Alias, Cast, FieldMetadata, InList, Placeholder, ScalarFunction,
};
use datafusion_expr::var_provider::is_system_variables;
use datafusion_expr::var_provider::VarType;
use datafusion_expr::{
binary_expr, lit, Between, BinaryExpr, Expr, Like, Operator, TryCast,
};
pub fn create_physical_expr(
e: &Expr,
input_dfschema: &DFSchema,
execution_props: &ExecutionProps,
) -> Result<Arc<dyn PhysicalExpr>> {
let input_schema: &Schema = &input_dfschema.into();
match e {
Expr::Alias(Alias { expr, metadata, .. }) => {
if let Expr::Literal(v, prior_metadata) = expr.as_ref() {
let new_metadata = FieldMetadata::merge_options(
prior_metadata.as_ref(),
metadata.as_ref(),
);
Ok(Arc::new(Literal::new_with_metadata(
v.clone(),
new_metadata,
)))
} else {
Ok(create_physical_expr(expr, input_dfschema, execution_props)?)
}
}
Expr::Column(c) => {
let idx = input_dfschema.index_of_column(c)?;
Ok(Arc::new(Column::new(&c.name, idx)))
}
Expr::Literal(value, metadata) => Ok(Arc::new(Literal::new_with_metadata(
value.clone(),
metadata.clone(),
))),
Expr::ScalarVariable(_, variable_names) => {
if is_system_variables(variable_names) {
match execution_props.get_var_provider(VarType::System) {
Some(provider) => {
let scalar_value = provider.get_value(variable_names.clone())?;
Ok(Arc::new(Literal::new(scalar_value)))
}
_ => plan_err!("No system variable provider found"),
}
} else {
match execution_props.get_var_provider(VarType::UserDefined) {
Some(provider) => {
let scalar_value = provider.get_value(variable_names.clone())?;
Ok(Arc::new(Literal::new(scalar_value)))
}
_ => plan_err!("No user defined variable provider found"),
}
}
}
Expr::IsTrue(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
lit(true),
);
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::IsNotTrue(expr) => {
let binary_op =
binary_expr(expr.as_ref().clone(), Operator::IsDistinctFrom, lit(true));
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::IsFalse(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
lit(false),
);
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::IsNotFalse(expr) => {
let binary_op =
binary_expr(expr.as_ref().clone(), Operator::IsDistinctFrom, lit(false));
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::IsUnknown(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
Expr::Literal(ScalarValue::Boolean(None), None),
);
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::IsNotUnknown(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsDistinctFrom,
Expr::Literal(ScalarValue::Boolean(None), None),
);
create_physical_expr(&binary_op, input_dfschema, execution_props)
}
Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
let lhs = create_physical_expr(left, input_dfschema, execution_props)?;
let rhs = create_physical_expr(right, input_dfschema, execution_props)?;
binary(lhs, *op, rhs, input_schema)
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
if escape_char.unwrap_or('\\') != '\\' {
return exec_err!(
"LIKE does not support escape_char other than the backslash (\\)"
);
}
let physical_expr =
create_physical_expr(expr, input_dfschema, execution_props)?;
let physical_pattern =
create_physical_expr(pattern, input_dfschema, execution_props)?;
like(
*negated,
*case_insensitive,
physical_expr,
physical_pattern,
input_schema,
)
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
if escape_char.is_some() {
return exec_err!("SIMILAR TO does not support escape_char yet");
}
let physical_expr =
create_physical_expr(expr, input_dfschema, execution_props)?;
let physical_pattern =
create_physical_expr(pattern, input_dfschema, execution_props)?;
similar_to(*negated, *case_insensitive, physical_expr, physical_pattern)
}
Expr::Case(case) => {
let expr: Option<Arc<dyn PhysicalExpr>> = if let Some(e) = &case.expr {
Some(create_physical_expr(
e.as_ref(),
input_dfschema,
execution_props,
)?)
} else {
None
};
let (when_expr, then_expr): (Vec<&Expr>, Vec<&Expr>) = case
.when_then_expr
.iter()
.map(|(w, t)| (w.as_ref(), t.as_ref()))
.unzip();
let when_expr =
create_physical_exprs(when_expr, input_dfschema, execution_props)?;
let then_expr =
create_physical_exprs(then_expr, input_dfschema, execution_props)?;
let when_then_expr: Vec<(Arc<dyn PhysicalExpr>, Arc<dyn PhysicalExpr>)> =
when_expr
.iter()
.zip(then_expr.iter())
.map(|(w, t)| (Arc::clone(w), Arc::clone(t)))
.collect();
let else_expr: Option<Arc<dyn PhysicalExpr>> =
if let Some(e) = &case.else_expr {
Some(create_physical_expr(
e.as_ref(),
input_dfschema,
execution_props,
)?)
} else {
None
};
Ok(expressions::case(expr, when_then_expr, else_expr)?)
}
Expr::Cast(Cast { expr, data_type }) => expressions::cast(
create_physical_expr(expr, input_dfschema, execution_props)?,
input_schema,
data_type.clone(),
),
Expr::TryCast(TryCast { expr, data_type }) => expressions::try_cast(
create_physical_expr(expr, input_dfschema, execution_props)?,
input_schema,
data_type.clone(),
),
Expr::Not(expr) => {
expressions::not(create_physical_expr(expr, input_dfschema, execution_props)?)
}
Expr::Negative(expr) => expressions::negative(
create_physical_expr(expr, input_dfschema, execution_props)?,
input_schema,
),
Expr::IsNull(expr) => expressions::is_null(create_physical_expr(
expr,
input_dfschema,
execution_props,
)?),
Expr::IsNotNull(expr) => expressions::is_not_null(create_physical_expr(
expr,
input_dfschema,
execution_props,
)?),
Expr::ScalarFunction(ScalarFunction { func, args }) => {
let physical_args =
create_physical_exprs(args, input_dfschema, execution_props)?;
let config_options = match execution_props.config_options.as_ref() {
Some(config_options) => Arc::clone(config_options),
None => Arc::new(ConfigOptions::default()),
};
Ok(Arc::new(ScalarFunctionExpr::try_new(
Arc::clone(func),
physical_args,
input_schema,
config_options,
)?))
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
let value_expr = create_physical_expr(expr, input_dfschema, execution_props)?;
let low_expr = create_physical_expr(low, input_dfschema, execution_props)?;
let high_expr = create_physical_expr(high, input_dfschema, execution_props)?;
let binary_expr = binary(
binary(
Arc::clone(&value_expr),
Operator::GtEq,
low_expr,
input_schema,
)?,
Operator::And,
binary(
Arc::clone(&value_expr),
Operator::LtEq,
high_expr,
input_schema,
)?,
input_schema,
);
if *negated {
expressions::not(binary_expr?)
} else {
binary_expr
}
}
Expr::InList(InList {
expr,
list,
negated,
}) => match expr.as_ref() {
Expr::Literal(ScalarValue::Utf8(None), _) => {
Ok(expressions::lit(ScalarValue::Boolean(None)))
}
_ => {
let value_expr =
create_physical_expr(expr, input_dfschema, execution_props)?;
let list_exprs =
create_physical_exprs(list, input_dfschema, execution_props)?;
expressions::in_list(value_expr, list_exprs, negated, input_schema)
}
},
Expr::Placeholder(Placeholder { id, .. }) => {
exec_err!("Placeholder '{id}' was not provided a value for execution.")
}
other => {
not_impl_err!("Physical plan does not support logical expression {other:?}")
}
}
}
pub fn create_physical_exprs<'a, I>(
exprs: I,
input_dfschema: &DFSchema,
execution_props: &ExecutionProps,
) -> Result<Vec<Arc<dyn PhysicalExpr>>>
where
I: IntoIterator<Item = &'a Expr>,
{
exprs
.into_iter()
.map(|expr| create_physical_expr(expr, input_dfschema, execution_props))
.collect()
}
pub fn logical2physical(expr: &Expr, schema: &Schema) -> Arc<dyn PhysicalExpr> {
let df_schema = schema.clone().to_dfschema().unwrap();
let execution_props = ExecutionProps::new();
create_physical_expr(expr, &df_schema, &execution_props).unwrap()
}
#[cfg(test)]
mod tests {
use arrow::array::{ArrayRef, BooleanArray, RecordBatch, StringArray};
use arrow::datatypes::{DataType, Field};
use datafusion_expr::{col, lit};
use super::*;
#[test]
fn test_create_physical_expr_scalar_input_output() -> Result<()> {
let expr = col("letter").eq(lit("A"));
let schema = Schema::new(vec![Field::new("letter", DataType::Utf8, false)]);
let df_schema = DFSchema::try_from_qualified_schema("data", &schema)?;
let p = create_physical_expr(&expr, &df_schema, &ExecutionProps::new())?;
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![Arc::new(StringArray::from_iter_values(vec![
"A", "B", "C", "D",
]))],
)?;
let result = p.evaluate(&batch)?;
let result = result.into_array(4).expect("Failed to convert to array");
assert_eq!(
&result,
&(Arc::new(BooleanArray::from(vec![true, false, false, false,])) as ArrayRef)
);
Ok(())
}
}