datafusion-datasource 48.0.1

datafusion-datasource
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`SchemaAdapter`] and [`SchemaAdapterFactory`] to adapt file-level record batches to a table schema.
//!
//! Adapter provides a method of translating the RecordBatches that come out of the
//! physical format into how they should be used by DataFusion.  For instance, a schema
//! can be stored external to a parquet file that maps parquet logical types to arrow types.

use arrow::array::{new_null_array, RecordBatch, RecordBatchOptions};
use arrow::compute::{can_cast_types, cast};
use arrow::datatypes::{Field, Schema, SchemaRef};
use datafusion_common::{plan_err, ColumnStatistics};
use std::fmt::Debug;
use std::sync::Arc;

/// Factory for creating [`SchemaAdapter`]
///
/// This interface provides a way to implement custom schema adaptation logic
/// for DataSourceExec (for example, to fill missing columns with default value
/// other than null).
///
/// Most users should use [`DefaultSchemaAdapterFactory`]. See that struct for
/// more details and examples.
pub trait SchemaAdapterFactory: Debug + Send + Sync + 'static {
    /// Create a [`SchemaAdapter`]
    ///
    /// Arguments:
    ///
    /// * `projected_table_schema`: The schema for the table, projected to
    ///   include only the fields being output (projected) by the this mapping.
    ///
    /// * `table_schema`: The entire table schema for the table
    fn create(
        &self,
        projected_table_schema: SchemaRef,
        table_schema: SchemaRef,
    ) -> Box<dyn SchemaAdapter>;
}

/// Creates [`SchemaMapper`]s to map file-level [`RecordBatch`]es to a table
/// schema, which may have a schema obtained from merging multiple file-level
/// schemas.
///
/// This is useful for implementing schema evolution in partitioned datasets.
///
/// See [`DefaultSchemaAdapterFactory`] for more details and examples.
pub trait SchemaAdapter: Send + Sync {
    /// Map a column index in the table schema to a column index in a particular
    /// file schema
    ///
    /// This is used while reading a file to push down projections by mapping
    /// projected column indexes from the table schema to the file schema
    ///
    /// Panics if index is not in range for the table schema
    fn map_column_index(&self, index: usize, file_schema: &Schema) -> Option<usize>;

    /// Creates a mapping for casting columns from the file schema to the table
    /// schema.
    ///
    /// This is used after reading a record batch. The returned [`SchemaMapper`]:
    ///
    /// 1. Maps columns to the expected columns indexes
    /// 2. Handles missing values (e.g. fills nulls or a default value) for
    ///    columns in the in the table schema not in the file schema
    /// 2. Handles different types: if the column in the file schema has a
    ///    different type than `table_schema`, the mapper will resolve this
    ///    difference (e.g. by casting to the appropriate type)
    ///
    /// Returns:
    /// * a [`SchemaMapper`]
    /// * an ordered list of columns to project from the file
    fn map_schema(
        &self,
        file_schema: &Schema,
    ) -> datafusion_common::Result<(Arc<dyn SchemaMapper>, Vec<usize>)>;
}

/// Maps, columns from a specific file schema to the table schema.
///
/// See [`DefaultSchemaAdapterFactory`] for more details and examples.
pub trait SchemaMapper: Debug + Send + Sync {
    /// Adapts a `RecordBatch` to match the `table_schema`
    fn map_batch(&self, batch: RecordBatch) -> datafusion_common::Result<RecordBatch>;

    /// Adapts file-level column `Statistics` to match the `table_schema`
    fn map_column_statistics(
        &self,
        file_col_statistics: &[ColumnStatistics],
    ) -> datafusion_common::Result<Vec<ColumnStatistics>>;
}

/// Default  [`SchemaAdapterFactory`] for mapping schemas.
///
/// This can be used to adapt file-level record batches to a table schema and
/// implement schema evolution.
///
/// Given an input file schema and a table schema, this factory returns
/// [`SchemaAdapter`] that return [`SchemaMapper`]s that:
///
/// 1. Reorder columns
/// 2. Cast columns to the correct type
/// 3. Fill missing columns with nulls
///
/// # Errors:
///
/// * If a column in the table schema is non-nullable but is not present in the
///   file schema (i.e. it is missing), the returned mapper tries to fill it with
///   nulls resulting in a schema error.
///
/// # Illustration of Schema Mapping
///
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─                  ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
///  ┌───────┐   ┌───────┐ │                  ┌───────┐   ┌───────┐   ┌───────┐ │
/// ││  1.0  │   │ "foo" │                   ││ NULL  │   │ "foo" │   │ "1.0" │
///  ├───────┤   ├───────┤ │ Schema mapping   ├───────┤   ├───────┤   ├───────┤ │
/// ││  2.0  │   │ "bar" │                   ││  NULL │   │ "bar" │   │ "2.0" │
///  └───────┘   └───────┘ │────────────────▶ └───────┘   └───────┘   └───────┘ │
/// │                                        │
///  column "c"  column "b"│                  column "a"  column "b"  column "c"│
/// │ Float64       Utf8                     │  Int32        Utf8        Utf8
///  ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘                  ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘
///     Input Record Batch                         Output Record Batch
///
///     Schema {                                   Schema {
///      "c": Float64,                              "a": Int32,
///      "b": Utf8,                                 "b": Utf8,
///     }                                           "c": Utf8,
///                                                }
/// ```
///
/// # Example of using the `DefaultSchemaAdapterFactory` to map [`RecordBatch`]s
///
/// Note `SchemaMapping` also supports mapping partial batches, which is used as
/// part of predicate pushdown.
///
/// ```
/// # use std::sync::Arc;
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion_datasource::schema_adapter::{DefaultSchemaAdapterFactory, SchemaAdapterFactory};
/// # use datafusion_common::record_batch;
/// // Table has fields "a",  "b" and "c"
/// let table_schema = Schema::new(vec![
///     Field::new("a", DataType::Int32, true),
///     Field::new("b", DataType::Utf8, true),
///     Field::new("c", DataType::Utf8, true),
/// ]);
///
/// // create an adapter to map the table schema to the file schema
/// let adapter = DefaultSchemaAdapterFactory::from_schema(Arc::new(table_schema));
///
/// // The file schema has fields "c" and "b" but "b" is stored as an 'Float64'
/// // instead of 'Utf8'
/// let file_schema = Schema::new(vec![
///    Field::new("c", DataType::Utf8, true),
///    Field::new("b", DataType::Float64, true),
/// ]);
///
/// // Get a mapping from the file schema to the table schema
/// let (mapper, _indices) = adapter.map_schema(&file_schema).unwrap();
///
/// let file_batch = record_batch!(
///     ("c", Utf8, vec!["foo", "bar"]),
///     ("b", Float64, vec![1.0, 2.0])
/// ).unwrap();
///
/// let mapped_batch = mapper.map_batch(file_batch).unwrap();
///
/// // the mapped batch has the correct schema and the "b" column has been cast to Utf8
/// let expected_batch = record_batch!(
///    ("a", Int32, vec![None, None]),  // missing column filled with nulls
///    ("b", Utf8, vec!["1.0", "2.0"]), // b was cast to string and order was changed
///    ("c", Utf8, vec!["foo", "bar"])
/// ).unwrap();
/// assert_eq!(mapped_batch, expected_batch);
/// ```
#[derive(Clone, Debug, Default)]
pub struct DefaultSchemaAdapterFactory;

impl DefaultSchemaAdapterFactory {
    /// Create a new factory for mapping batches from a file schema to a table
    /// schema.
    ///
    /// This is a convenience for [`DefaultSchemaAdapterFactory::create`] with
    /// the same schema for both the projected table schema and the table
    /// schema.
    pub fn from_schema(table_schema: SchemaRef) -> Box<dyn SchemaAdapter> {
        Self.create(Arc::clone(&table_schema), table_schema)
    }
}

impl SchemaAdapterFactory for DefaultSchemaAdapterFactory {
    fn create(
        &self,
        projected_table_schema: SchemaRef,
        _table_schema: SchemaRef,
    ) -> Box<dyn SchemaAdapter> {
        Box::new(DefaultSchemaAdapter {
            projected_table_schema,
        })
    }
}

/// This SchemaAdapter requires both the table schema and the projected table
/// schema. See  [`SchemaMapping`] for more details
#[derive(Clone, Debug)]
pub(crate) struct DefaultSchemaAdapter {
    /// The schema for the table, projected to include only the fields being output (projected) by the
    /// associated ParquetSource
    projected_table_schema: SchemaRef,
}

/// Checks if a file field can be cast to a table field
///
/// Returns Ok(true) if casting is possible, or an error explaining why casting is not possible
pub(crate) fn can_cast_field(
    file_field: &Field,
    table_field: &Field,
) -> datafusion_common::Result<bool> {
    if can_cast_types(file_field.data_type(), table_field.data_type()) {
        Ok(true)
    } else {
        plan_err!(
            "Cannot cast file schema field {} of type {:?} to table schema field of type {:?}",
            file_field.name(),
            file_field.data_type(),
            table_field.data_type()
        )
    }
}

impl SchemaAdapter for DefaultSchemaAdapter {
    /// Map a column index in the table schema to a column index in a particular
    /// file schema
    ///
    /// Panics if index is not in range for the table schema
    fn map_column_index(&self, index: usize, file_schema: &Schema) -> Option<usize> {
        let field = self.projected_table_schema.field(index);
        Some(file_schema.fields.find(field.name())?.0)
    }

    /// Creates a `SchemaMapping` for casting or mapping the columns from the
    /// file schema to the table schema.
    ///
    /// If the provided `file_schema` contains columns of a different type to
    /// the expected `table_schema`, the method will attempt to cast the array
    /// data from the file schema to the table schema where possible.
    ///
    /// Returns a [`SchemaMapping`] that can be applied to the output batch
    /// along with an ordered list of columns to project from the file
    fn map_schema(
        &self,
        file_schema: &Schema,
    ) -> datafusion_common::Result<(Arc<dyn SchemaMapper>, Vec<usize>)> {
        let (field_mappings, projection) = create_field_mapping(
            file_schema,
            &self.projected_table_schema,
            can_cast_field,
        )?;

        Ok((
            Arc::new(SchemaMapping::new(
                Arc::clone(&self.projected_table_schema),
                field_mappings,
            )),
            projection,
        ))
    }
}

/// Helper function that creates field mappings between file schema and table schema
///
/// Maps columns from the file schema to their corresponding positions in the table schema,
/// applying type compatibility checking via the provided predicate function.
///
/// Returns field mappings (for column reordering) and a projection (for field selection).
pub(crate) fn create_field_mapping<F>(
    file_schema: &Schema,
    projected_table_schema: &SchemaRef,
    can_map_field: F,
) -> datafusion_common::Result<(Vec<Option<usize>>, Vec<usize>)>
where
    F: Fn(&Field, &Field) -> datafusion_common::Result<bool>,
{
    let mut projection = Vec::with_capacity(file_schema.fields().len());
    let mut field_mappings = vec![None; projected_table_schema.fields().len()];

    for (file_idx, file_field) in file_schema.fields.iter().enumerate() {
        if let Some((table_idx, table_field)) =
            projected_table_schema.fields().find(file_field.name())
        {
            if can_map_field(file_field, table_field)? {
                field_mappings[table_idx] = Some(projection.len());
                projection.push(file_idx);
            }
        }
    }

    Ok((field_mappings, projection))
}

/// The SchemaMapping struct holds a mapping from the file schema to the table
/// schema and any necessary type conversions.
///
/// [`map_batch`] is used by the ParquetOpener to produce a RecordBatch which
/// has the projected schema, since that's the schema which is supposed to come
/// out of the execution of this query. Thus `map_batch` uses
/// `projected_table_schema` as it can only operate on the projected fields.
///
/// [`map_batch`]: Self::map_batch
#[derive(Debug)]
pub struct SchemaMapping {
    /// The schema of the table. This is the expected schema after conversion
    /// and it should match the schema of the query result.
    projected_table_schema: SchemaRef,
    /// Mapping from field index in `projected_table_schema` to index in
    /// projected file_schema.
    ///
    /// They are Options instead of just plain `usize`s because the table could
    /// have fields that don't exist in the file.
    field_mappings: Vec<Option<usize>>,
}

impl SchemaMapping {
    /// Creates a new SchemaMapping instance
    ///
    /// Initializes the field mappings needed to transform file data to the projected table schema
    pub fn new(
        projected_table_schema: SchemaRef,
        field_mappings: Vec<Option<usize>>,
    ) -> Self {
        Self {
            projected_table_schema,
            field_mappings,
        }
    }
}

impl SchemaMapper for SchemaMapping {
    /// Adapts a `RecordBatch` to match the `projected_table_schema` using the stored mapping and
    /// conversions.
    /// The produced RecordBatch has a schema that contains only the projected columns.
    fn map_batch(&self, batch: RecordBatch) -> datafusion_common::Result<RecordBatch> {
        let batch_rows = batch.num_rows();
        let batch_cols = batch.columns().to_vec();

        let cols = self
            .projected_table_schema
            // go through each field in the projected schema
            .fields()
            .iter()
            // and zip it with the index that maps fields from the projected table schema to the
            // projected file schema in `batch`
            .zip(&self.field_mappings)
            // and for each one...
            .map(|(field, file_idx)| {
                file_idx.map_or_else(
                    // If this field only exists in the table, and not in the file, then we know
                    // that it's null, so just return that.
                    || Ok(new_null_array(field.data_type(), batch_rows)),
                    // However, if it does exist in both, then try to cast it to the correct output
                    // type
                    |batch_idx| cast(&batch_cols[batch_idx], field.data_type()),
                )
            })
            .collect::<datafusion_common::Result<Vec<_>, _>>()?;

        // Necessary to handle empty batches
        let options = RecordBatchOptions::new().with_row_count(Some(batch.num_rows()));

        let schema = Arc::clone(&self.projected_table_schema);
        let record_batch = RecordBatch::try_new_with_options(schema, cols, &options)?;
        Ok(record_batch)
    }

    /// Adapts file-level column `Statistics` to match the `table_schema`
    fn map_column_statistics(
        &self,
        file_col_statistics: &[ColumnStatistics],
    ) -> datafusion_common::Result<Vec<ColumnStatistics>> {
        let mut table_col_statistics = vec![];

        // Map the statistics for each field in the file schema to the corresponding field in the
        // table schema, if a field is not present in the file schema, we need to fill it with `ColumnStatistics::new_unknown`
        for (_, file_col_idx) in self
            .projected_table_schema
            .fields()
            .iter()
            .zip(&self.field_mappings)
        {
            if let Some(file_col_idx) = file_col_idx {
                table_col_statistics.push(
                    file_col_statistics
                        .get(*file_col_idx)
                        .cloned()
                        .unwrap_or_default(),
                );
            } else {
                table_col_statistics.push(ColumnStatistics::new_unknown());
            }
        }

        Ok(table_col_statistics)
    }
}

#[cfg(test)]
mod tests {
    use arrow::datatypes::{DataType, Field};
    use datafusion_common::{stats::Precision, Statistics};

    use super::*;

    #[test]
    fn test_schema_mapping_map_statistics_basic() {
        // Create table schema (a, b, c)
        let table_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
            Field::new("c", DataType::Float64, true),
        ]));

        // Create file schema (b, a) - different order, missing c
        let file_schema = Schema::new(vec![
            Field::new("b", DataType::Utf8, true),
            Field::new("a", DataType::Int32, true),
        ]);

        // Create SchemaAdapter
        let adapter = DefaultSchemaAdapter {
            projected_table_schema: Arc::clone(&table_schema),
        };

        // Get mapper and projection
        let (mapper, projection) = adapter.map_schema(&file_schema).unwrap();

        // Should project columns 0,1 from file
        assert_eq!(projection, vec![0, 1]);

        // Create file statistics
        let mut file_stats = Statistics::default();

        // Statistics for column b (index 0 in file)
        let b_stats = ColumnStatistics {
            null_count: Precision::Exact(5),
            ..Default::default()
        };

        // Statistics for column a (index 1 in file)
        let a_stats = ColumnStatistics {
            null_count: Precision::Exact(10),
            ..Default::default()
        };

        file_stats.column_statistics = vec![b_stats, a_stats];

        // Map statistics
        let table_col_stats = mapper
            .map_column_statistics(&file_stats.column_statistics)
            .unwrap();

        // Verify stats
        assert_eq!(table_col_stats.len(), 3);
        assert_eq!(table_col_stats[0].null_count, Precision::Exact(10)); // a from file idx 1
        assert_eq!(table_col_stats[1].null_count, Precision::Exact(5)); // b from file idx 0
        assert_eq!(table_col_stats[2].null_count, Precision::Absent); // c (unknown)
    }

    #[test]
    fn test_schema_mapping_map_statistics_empty() {
        // Create schemas
        let table_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
        ]));
        let file_schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
        ]);

        let adapter = DefaultSchemaAdapter {
            projected_table_schema: Arc::clone(&table_schema),
        };
        let (mapper, _) = adapter.map_schema(&file_schema).unwrap();

        // Empty file statistics
        let file_stats = Statistics::default();
        let table_col_stats = mapper
            .map_column_statistics(&file_stats.column_statistics)
            .unwrap();

        // All stats should be unknown
        assert_eq!(table_col_stats.len(), 2);
        assert_eq!(table_col_stats[0], ColumnStatistics::new_unknown(),);
        assert_eq!(table_col_stats[1], ColumnStatistics::new_unknown(),);
    }

    #[test]
    fn test_can_cast_field() {
        // Same type should work
        let from_field = Field::new("col", DataType::Int32, true);
        let to_field = Field::new("col", DataType::Int32, true);
        assert!(can_cast_field(&from_field, &to_field).unwrap());

        // Casting Int32 to Float64 is allowed
        let from_field = Field::new("col", DataType::Int32, true);
        let to_field = Field::new("col", DataType::Float64, true);
        assert!(can_cast_field(&from_field, &to_field).unwrap());

        // Casting Float64 to Utf8 should work (converts to string)
        let from_field = Field::new("col", DataType::Float64, true);
        let to_field = Field::new("col", DataType::Utf8, true);
        assert!(can_cast_field(&from_field, &to_field).unwrap());

        // Binary to Utf8 is not supported - this is an example of a cast that should fail
        // Note: We use Binary instead of Utf8->Int32 because Arrow actually supports that cast
        let from_field = Field::new("col", DataType::Binary, true);
        let to_field = Field::new("col", DataType::Decimal128(10, 2), true);
        let result = can_cast_field(&from_field, &to_field);
        assert!(result.is_err());
        let error_msg = result.unwrap_err().to_string();
        assert!(error_msg.contains("Cannot cast file schema field col"));
    }

    #[test]
    fn test_create_field_mapping() {
        // Define the table schema
        let table_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
            Field::new("c", DataType::Float64, true),
        ]));

        // Define file schema: different order, missing column c, and b has different type
        let file_schema = Schema::new(vec![
            Field::new("b", DataType::Float64, true), // Different type but castable to Utf8
            Field::new("a", DataType::Int32, true),   // Same type
            Field::new("d", DataType::Boolean, true), // Not in table schema
        ]);

        // Custom can_map_field function that allows all mappings for testing
        let allow_all = |_: &Field, _: &Field| Ok(true);

        // Test field mapping
        let (field_mappings, projection) =
            create_field_mapping(&file_schema, &table_schema, allow_all).unwrap();

        // Expected:
        // - field_mappings[0] (a) maps to projection[1]
        // - field_mappings[1] (b) maps to projection[0]
        // - field_mappings[2] (c) is None (not in file)
        assert_eq!(field_mappings, vec![Some(1), Some(0), None]);
        assert_eq!(projection, vec![0, 1]); // Projecting file columns b, a

        // Test with a failing mapper
        let fails_all = |_: &Field, _: &Field| Ok(false);
        let (field_mappings, projection) =
            create_field_mapping(&file_schema, &table_schema, fails_all).unwrap();

        // Should have no mappings or projections if all cast checks fail
        assert_eq!(field_mappings, vec![None, None, None]);
        assert_eq!(projection, Vec::<usize>::new());

        // Test with error-producing mapper
        let error_mapper = |_: &Field, _: &Field| plan_err!("Test error");
        let result = create_field_mapping(&file_schema, &table_schema, error_mapper);
        assert!(result.is_err());
        assert!(result.unwrap_err().to_string().contains("Test error"));
    }

    #[test]
    fn test_schema_mapping_new() {
        // Define the projected table schema
        let projected_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
        ]));

        // Define field mappings from table to file
        let field_mappings = vec![Some(1), Some(0)];

        // Create SchemaMapping manually
        let mapping =
            SchemaMapping::new(Arc::clone(&projected_schema), field_mappings.clone());

        // Check that fields were set correctly
        assert_eq!(*mapping.projected_table_schema, *projected_schema);
        assert_eq!(mapping.field_mappings, field_mappings);

        // Test with a batch to ensure it works properly
        let batch = RecordBatch::try_new(
            Arc::new(Schema::new(vec![
                Field::new("b_file", DataType::Utf8, true),
                Field::new("a_file", DataType::Int32, true),
            ])),
            vec![
                Arc::new(arrow::array::StringArray::from(vec!["hello", "world"])),
                Arc::new(arrow::array::Int32Array::from(vec![1, 2])),
            ],
        )
        .unwrap();

        // Test that map_batch works with our manually created mapping
        let mapped_batch = mapping.map_batch(batch).unwrap();

        // Verify the mapped batch has the correct schema and data
        assert_eq!(*mapped_batch.schema(), *projected_schema);
        assert_eq!(mapped_batch.num_columns(), 2);
        assert_eq!(mapped_batch.column(0).len(), 2); // a column
        assert_eq!(mapped_batch.column(1).len(), 2); // b column
    }

    #[test]
    fn test_map_schema_error_path() {
        // Define the table schema
        let table_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
            Field::new("c", DataType::Decimal128(10, 2), true), // Use Decimal which has stricter cast rules
        ]));

        // Define file schema with incompatible type for column c
        let file_schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Float64, true), // Different but castable
            Field::new("c", DataType::Binary, true),  // Not castable to Decimal128
        ]);

        // Create DefaultSchemaAdapter
        let adapter = DefaultSchemaAdapter {
            projected_table_schema: Arc::clone(&table_schema),
        };

        // map_schema should error due to incompatible types
        let result = adapter.map_schema(&file_schema);
        assert!(result.is_err());
        let error_msg = result.unwrap_err().to_string();
        assert!(error_msg.contains("Cannot cast file schema field c"));
    }

    #[test]
    fn test_map_schema_happy_path() {
        // Define the table schema
        let table_schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Utf8, true),
            Field::new("c", DataType::Decimal128(10, 2), true),
        ]));

        // Create DefaultSchemaAdapter
        let adapter = DefaultSchemaAdapter {
            projected_table_schema: Arc::clone(&table_schema),
        };

        // Define compatible file schema (missing column c)
        let compatible_file_schema = Schema::new(vec![
            Field::new("a", DataType::Int64, true), // Can be cast to Int32
            Field::new("b", DataType::Float64, true), // Can be cast to Utf8
        ]);

        // Test successful schema mapping
        let (mapper, projection) = adapter.map_schema(&compatible_file_schema).unwrap();

        // Verify field_mappings and projection created correctly
        assert_eq!(projection, vec![0, 1]); // Projecting a and b

        // Verify the SchemaMapping works with actual data
        let file_batch = RecordBatch::try_new(
            Arc::new(compatible_file_schema.clone()),
            vec![
                Arc::new(arrow::array::Int64Array::from(vec![100, 200])),
                Arc::new(arrow::array::Float64Array::from(vec![1.5, 2.5])),
            ],
        )
        .unwrap();

        let mapped_batch = mapper.map_batch(file_batch).unwrap();

        // Verify correct schema mapping
        assert_eq!(*mapped_batch.schema(), *table_schema);
        assert_eq!(mapped_batch.num_columns(), 3); // a, b, c

        // Column c should be null since it wasn't in the file schema
        let c_array = mapped_batch.column(2);
        assert_eq!(c_array.len(), 2);
        assert_eq!(c_array.null_count(), 2);
    }
}