1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License.
// This product includes software developed at Datadog (https://www.datadoghq.com/).
// Copyright 2019-Present Datadog, Inc.
use serde::de::{Error, MapAccess, Visitor};
use serde::{Deserialize, Deserializer, Serialize};
use serde_with::skip_serializing_none;
use std::fmt::{self, Formatter};
/// Recommended resource values for a Spark driver or executor, derived from recent real usage metrics. Used by SPA to propose more efficient pod sizing.
#[non_exhaustive]
#[skip_serializing_none]
#[derive(Clone, Debug, PartialEq, Serialize)]
pub struct Estimation {
/// CPU usage statistics derived from historical Spark job metrics. Provides multiple estimates so users can choose between conservative and cost-saving risk profiles.
#[serde(rename = "cpu")]
pub cpu: Option<crate::datadogV2::model::Cpu>,
/// Recommended ephemeral storage allocation (in MiB). Derived from job temporary storage patterns.
#[serde(rename = "ephemeral_storage")]
pub ephemeral_storage: Option<i64>,
/// Recommended JVM heap size (in MiB).
#[serde(rename = "heap")]
pub heap: Option<i64>,
/// Recommended total memory allocation (in MiB). Includes both heap and overhead.
#[serde(rename = "memory")]
pub memory: Option<i64>,
/// Recommended JVM overhead (in MiB). Computed as total memory - heap.
#[serde(rename = "overhead")]
pub overhead: Option<i64>,
#[serde(flatten)]
pub additional_properties: std::collections::BTreeMap<String, serde_json::Value>,
#[serde(skip)]
#[serde(default)]
pub(crate) _unparsed: bool,
}
impl Estimation {
pub fn new() -> Estimation {
Estimation {
cpu: None,
ephemeral_storage: None,
heap: None,
memory: None,
overhead: None,
additional_properties: std::collections::BTreeMap::new(),
_unparsed: false,
}
}
pub fn cpu(mut self, value: crate::datadogV2::model::Cpu) -> Self {
self.cpu = Some(value);
self
}
pub fn ephemeral_storage(mut self, value: i64) -> Self {
self.ephemeral_storage = Some(value);
self
}
pub fn heap(mut self, value: i64) -> Self {
self.heap = Some(value);
self
}
pub fn memory(mut self, value: i64) -> Self {
self.memory = Some(value);
self
}
pub fn overhead(mut self, value: i64) -> Self {
self.overhead = Some(value);
self
}
pub fn additional_properties(
mut self,
value: std::collections::BTreeMap<String, serde_json::Value>,
) -> Self {
self.additional_properties = value;
self
}
}
impl Default for Estimation {
fn default() -> Self {
Self::new()
}
}
impl<'de> Deserialize<'de> for Estimation {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct EstimationVisitor;
impl<'a> Visitor<'a> for EstimationVisitor {
type Value = Estimation;
fn expecting(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.write_str("a mapping")
}
fn visit_map<M>(self, mut map: M) -> Result<Self::Value, M::Error>
where
M: MapAccess<'a>,
{
let mut cpu: Option<crate::datadogV2::model::Cpu> = None;
let mut ephemeral_storage: Option<i64> = None;
let mut heap: Option<i64> = None;
let mut memory: Option<i64> = None;
let mut overhead: Option<i64> = None;
let mut additional_properties: std::collections::BTreeMap<
String,
serde_json::Value,
> = std::collections::BTreeMap::new();
let mut _unparsed = false;
while let Some((k, v)) = map.next_entry::<String, serde_json::Value>()? {
match k.as_str() {
"cpu" => {
if v.is_null() {
continue;
}
cpu = Some(serde_json::from_value(v).map_err(M::Error::custom)?);
}
"ephemeral_storage" => {
if v.is_null() {
continue;
}
ephemeral_storage =
Some(serde_json::from_value(v).map_err(M::Error::custom)?);
}
"heap" => {
if v.is_null() {
continue;
}
heap = Some(serde_json::from_value(v).map_err(M::Error::custom)?);
}
"memory" => {
if v.is_null() {
continue;
}
memory = Some(serde_json::from_value(v).map_err(M::Error::custom)?);
}
"overhead" => {
if v.is_null() {
continue;
}
overhead = Some(serde_json::from_value(v).map_err(M::Error::custom)?);
}
&_ => {
if let Ok(value) = serde_json::from_value(v.clone()) {
additional_properties.insert(k, value);
}
}
}
}
let content = Estimation {
cpu,
ephemeral_storage,
heap,
memory,
overhead,
additional_properties,
_unparsed,
};
Ok(content)
}
}
deserializer.deserialize_any(EstimationVisitor)
}
}