1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
use dashu_base::Sign;
use dashu_int::{DoubleWord, IBig, UBig};
use crate::{error::panic_divide_by_0, repr::Repr};
/// An arbitrary precision rational number.
///
/// This struct represents an rational number with arbitrarily large numerator and denominator
/// based on [UBig] and [IBig].
#[derive(PartialOrd, Ord)]
#[repr(transparent)]
pub struct RBig(pub(crate) Repr);
/// An arbitrary precision rational number without strict reduction.
///
/// This struct is almost the same as [RBig], except for that the numerator and the
/// denominator are allowed to have common divisors **other than a power of 2**. This allows
/// faster computation because [Gcd][dashu_base::Gcd] is not required for each operation.
///
/// Since the representation is not canonicalized, [Hash] is not implemented for [Relaxed].
/// Please use [RBig] if you want to store the rational number in a hash set, or use `num_order::NumHash`.
///
/// # Conversion from/to [RBig]
///
/// To convert from [RBig], use [RBig::relax()]. To convert to [RBig], use [Relaxed::canonicalize()].
#[derive(PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct Relaxed(pub(crate) Repr); // the result is not always normalized
impl RBig {
/// [RBig] with value 0
pub const ZERO: Self = Self(Repr::zero());
/// [RBig] with value 1
pub const ONE: Self = Self(Repr::one());
/// [RBig] with value -1
pub const NEG_ONE: Self = Self(Repr::neg_one());
/// Create a rational number from a signed numerator and an unsigned denominator
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, UBig};
/// # use dashu_ratio::RBig;
/// assert_eq!(RBig::from_parts(IBig::ZERO, UBig::ONE), RBig::ZERO);
/// assert_eq!(RBig::from_parts(IBig::ONE, UBig::ONE), RBig::ONE);
/// assert_eq!(RBig::from_parts(IBig::NEG_ONE, UBig::ONE), RBig::NEG_ONE);
/// ```
#[inline]
pub fn from_parts(numerator: IBig, denominator: UBig) -> Self {
if denominator.is_zero() {
panic_divide_by_0()
}
Self(
Repr {
numerator,
denominator,
}
.reduce(),
)
}
/// Convert the rational number into (numerator, denumerator) parts.
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, UBig};
/// # use dashu_ratio::RBig;
/// assert_eq!(RBig::ZERO.into_parts(), (IBig::ZERO, UBig::ONE));
/// assert_eq!(RBig::ONE.into_parts(), (IBig::ONE, UBig::ONE));
/// assert_eq!(RBig::NEG_ONE.into_parts(), (IBig::NEG_ONE, UBig::ONE));
/// ```
#[inline]
pub fn into_parts(self) -> (IBig, UBig) {
(self.0.numerator, self.0.denominator)
}
/// Create a rational number from a signed numerator and a signed denominator
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, UBig};
/// # use dashu_ratio::RBig;
/// assert_eq!(RBig::from_parts_signed(1.into(), 1.into()), RBig::ONE);
/// assert_eq!(RBig::from_parts_signed(12.into(), (-12).into()), RBig::NEG_ONE);
/// ```
#[inline]
pub fn from_parts_signed(numerator: IBig, denominator: IBig) -> Self {
let (sign, mag) = denominator.into_parts();
Self::from_parts(numerator * sign, mag)
}
/// Create a rational number in a const context
///
/// The magnitude of the numerator and the denominator is limited to
/// a [DoubleWord][dashu_int::DoubleWord].
///
/// # Examples
///
/// ```
/// # use dashu_int::Sign;
/// # use dashu_ratio::{RBig, Relaxed};
/// const ONE: RBig = RBig::from_parts_const(Sign::Positive, 1, 1);
/// assert_eq!(ONE, RBig::ONE);
/// const NEG_ONE: RBig = RBig::from_parts_const(Sign::Negative, 1, 1);
/// assert_eq!(NEG_ONE, RBig::NEG_ONE);
/// ```
#[inline]
pub const fn from_parts_const(
sign: Sign,
mut numerator: DoubleWord,
mut denominator: DoubleWord,
) -> Self {
if denominator == 0 {
panic_divide_by_0()
} else if numerator == 0 {
return Self::ZERO;
}
if numerator > 1 && denominator > 1 {
// perform a naive but const gcd
let (mut y, mut r) = (denominator, numerator % denominator);
while r > 1 {
let new_r = y % r;
y = r;
r = new_r;
}
if r == 0 {
numerator /= y;
denominator /= y;
}
}
Self(Repr {
numerator: IBig::from_parts_const(sign, numerator),
denominator: UBig::from_dword(denominator),
})
}
/// Get the numerator of the rational number
///
/// # Examples
///
/// ```
/// # use dashu_int::IBig;
/// # use dashu_ratio::RBig;
/// assert_eq!(RBig::ZERO.numerator(), &IBig::ZERO);
/// assert_eq!(RBig::ONE.numerator(), &IBig::ONE);
/// ```
#[inline]
pub fn numerator(&self) -> &IBig {
&self.0.numerator
}
/// Get the denominator of the rational number
///
/// # Examples
///
/// ```
/// # use dashu_int::UBig;
/// # use dashu_ratio::RBig;
/// assert_eq!(RBig::ZERO.denominator(), &UBig::ONE);
/// assert_eq!(RBig::ONE.denominator(), &UBig::ONE);
/// ```
#[inline]
pub fn denominator(&self) -> &UBig {
&self.0.denominator
}
/// Convert this rational number into a [Relaxed] version
///
/// # Examples
///
/// ```
/// # use dashu_ratio::{RBig, Relaxed};
/// assert_eq!(RBig::ZERO.relax(), Relaxed::ZERO);
/// assert_eq!(RBig::ONE.relax(), Relaxed::ONE);
/// ```
#[inline]
pub fn relax(self) -> Relaxed {
Relaxed(self.0)
}
/// Check whether the number is 0
///
/// # Examples
///
/// ```
/// # use dashu_ratio::RBig;
/// assert!(RBig::ZERO.is_zero());
/// assert!(!RBig::ONE.is_zero());
/// ```
#[inline]
pub const fn is_zero(&self) -> bool {
self.0.numerator.is_zero()
}
/// Check whether the number is 1
///
/// # Examples
///
/// ```
/// # use dashu_ratio::RBig;
/// assert!(!RBig::ZERO.is_one());
/// assert!(RBig::ONE.is_one());
/// ```
#[inline]
pub const fn is_one(&self) -> bool {
self.0.numerator.is_one()
}
}
// This custom implementation is necessary due to https://github.com/rust-lang/rust/issues/98374
impl Clone for RBig {
#[inline]
fn clone(&self) -> RBig {
RBig(self.0.clone())
}
#[inline]
fn clone_from(&mut self, source: &RBig) {
self.0.clone_from(&source.0)
}
}
impl Default for RBig {
#[inline]
fn default() -> Self {
Self::ZERO
}
}
impl Relaxed {
/// [Relaxed] with value 0
pub const ZERO: Self = Self(Repr::zero());
/// [Relaxed] with value 1
pub const ONE: Self = Self(Repr::one());
/// [Relaxed] with value -1
pub const NEG_ONE: Self = Self(Repr::neg_one());
/// Create a rational number from a signed numerator and a signed denominator
///
/// See [RBig::from_parts] for details.
#[inline]
pub fn from_parts(numerator: IBig, denominator: UBig) -> Self {
if denominator.is_zero() {
panic_divide_by_0();
}
Self(
Repr {
numerator,
denominator,
}
.reduce2(),
)
}
/// Convert the rational number into (numerator, denumerator) parts.
///
/// See [RBig::into_parts] for details.
#[inline]
pub fn into_parts(self) -> (IBig, UBig) {
(self.0.numerator, self.0.denominator)
}
/// Create a rational number from a signed numerator and a signed denominator
///
/// See [RBig::from_parts_signed] for details.
#[inline]
pub fn from_parts_signed(numerator: IBig, denominator: IBig) -> Self {
let (sign, mag) = denominator.into_parts();
Self::from_parts(numerator * sign, mag)
}
/// Create a rational number in a const context
///
/// See [RBig::from_parts_const] for details.
#[inline]
pub const fn from_parts_const(
sign: Sign,
numerator: DoubleWord,
denominator: DoubleWord,
) -> Self {
if denominator == 0 {
panic_divide_by_0()
} else if numerator == 0 {
return Self::ZERO;
}
let n2 = numerator.trailing_zeros();
let d2 = denominator.trailing_zeros();
let zeros = if n2 <= d2 { n2 } else { d2 };
Self(Repr {
numerator: IBig::from_parts_const(sign, numerator >> zeros),
denominator: UBig::from_dword(denominator >> zeros),
})
}
/// Get the numerator of the rational number
///
/// See [RBig::numerator] for details.
#[inline]
pub fn numerator(&self) -> &IBig {
&self.0.numerator
}
/// Get the denominator of the rational number
///
/// See [RBig::denominator] for details.
#[inline]
pub fn denominator(&self) -> &UBig {
&self.0.denominator
}
/// Convert this rational number into an [RBig] version
///
/// # Examples
///
/// ```
/// # use dashu_int::IBig;
/// # use dashu_ratio::{RBig, Relaxed};
/// assert_eq!(Relaxed::ONE.canonicalize(), RBig::ONE);
///
/// let r = Relaxed::from_parts(10.into(), 5u8.into());
/// assert_eq!(r.canonicalize().numerator(), &IBig::from(2));
/// ```
#[inline]
pub fn canonicalize(self) -> RBig {
RBig(self.0.reduce())
}
/// Check whether the number is 0
///
/// See [RBig::is_zero] for details.
#[inline]
pub const fn is_zero(&self) -> bool {
self.0.numerator.is_zero()
}
/// Check whether the number is 1
///
/// See [RBig::is_one] for details.
#[inline]
pub const fn is_one(&self) -> bool {
self.0.numerator.is_one()
}
}
// This custom implementation is necessary due to https://github.com/rust-lang/rust/issues/98374
impl Clone for Relaxed {
#[inline]
fn clone(&self) -> Relaxed {
Relaxed(self.0.clone())
}
#[inline]
fn clone_from(&mut self, source: &Relaxed) {
self.0.clone_from(&source.0)
}
}
impl Default for Relaxed {
#[inline]
fn default() -> Self {
Self::ZERO
}
}