1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
//! Signed big integer.
use crate::{
repr::{Repr, TypedRepr, TypedReprRef},
Sign, UBig,
};
/// An signed arbitrary precision integer.
///
/// This struct represents an arbitrarily large signed integer. Technically the size of the integer
/// is bounded by the memory size, but it's enough for practical use on modern devices.
///
/// # Parsing and printing
///
/// There are four ways to create an [IBig] instance:
/// 1. Use predifined constants (e.g. [IBig::ZERO], [IBig::NEG_ONE]).
/// 1. Use the literal macro `ibig!` defined in the [`dashu-macro`](https://docs.rs/dashu-macros/latest/dashu_macros/) crate.
/// 1. Construct from a [Sign] and a [UBig] instance.
/// 1. Parse from a string.
///
/// Parsing from either literal or string supports representation with base 2~36.
///
/// For printing, the [IBig] type supports common formatting traits ([Display][core::fmt::Display],
/// [Debug][core::fmt::Debug], [LowerHex][core::fmt::LowerHex], etc.). Specially, printing huge number
/// using [Debug][core::fmt::Debug] will conveniently omit the middle digits of the number, only print
/// the least and most significant (decimal) digits.
///
/// ```
/// // parsing
/// # use dashu_int::{error::ParseError, IBig, Word};
/// let a = IBig::from(408580953453092208335085386466371u128);
/// let b = IBig::from(-0x1231abcd4134i64);
/// let c = IBig::from_str_radix("a2a123bbb127779cccc123", 32)?;
/// let d = IBig::from_str_radix("-1231abcd4134", 16)?;
/// assert_eq!(a, c);
/// assert_eq!(b, d);
///
/// // printing
/// assert_eq!(format!("{}", IBig::from(12)), "12");
/// assert_eq!(format!("{:#X}", IBig::from(-0xabcd)), "-0xABCD");
/// if Word::BITS == 64 {
/// // number of digits to display depends on the word size
/// assert_eq!(
/// format!("{:?}", IBig::NEG_ONE << 1000),
/// "-1071508607186267320..4386837205668069376"
/// );
/// }
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Memory
///
/// The internal representation of [IBig] is exactly the same as [UBig]. It just use a
/// small trick to store the sign bit without additional memory allocation. This means that
/// [IBig] also has the small integer optimization and the niche bit to use with simple
/// enums.
///
/// ```
/// # use dashu_int::{IBig, UBig};
/// use core::mem::size_of;
/// assert_eq!(size_of::<IBig>(), size_of::<UBig>());
/// assert_eq!(size_of::<IBig>(), size_of::<Option<IBig>>());
/// ```
///
#[derive(Eq, Hash, PartialEq)]
#[repr(transparent)]
pub struct IBig(pub(crate) Repr);
impl IBig {
#[inline]
pub(crate) fn as_sign_repr(&self) -> (Sign, TypedReprRef<'_>) {
self.0.as_sign_typed()
}
#[inline]
pub(crate) fn into_sign_repr(self) -> (Sign, TypedRepr) {
self.0.into_sign_typed()
}
/// Get the raw representation in [Word][crate::Word]s.
///
/// If the number is zero, then empty slice will be returned.
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, Sign};
/// assert_eq!(IBig::ZERO.as_sign_words(), (Sign::Positive, &[] as &[_]));
/// assert_eq!(IBig::NEG_ONE.as_sign_words().0, Sign::Negative);
/// assert_eq!(IBig::NEG_ONE.as_sign_words().1, &[1]);
/// ```
#[inline]
pub fn as_sign_words(&self) -> (Sign, &[crate::Word]) {
self.0.as_sign_slice()
}
/// Get the sign of the [IBig]. Zero value has a positive sign.
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, Sign};
/// assert_eq!(IBig::ZERO.sign(), Sign::Positive);
/// assert_eq!(IBig::from(2).sign(), Sign::Positive);
/// assert_eq!(IBig::from(-3).sign(), Sign::Negative);
/// ```
#[inline]
pub const fn sign(&self) -> Sign {
self.0.sign()
}
/// Convert the [IBig] into its [Sign] and [UBig] magnitude
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, Sign, UBig};
/// assert_eq!(IBig::ZERO.into_parts(), (Sign::Positive, UBig::ZERO));
/// assert_eq!(IBig::ONE.into_parts(), (Sign::Positive, UBig::ONE));
/// assert_eq!(IBig::NEG_ONE.into_parts(), (Sign::Negative, UBig::ONE));
/// ```
#[inline]
pub fn into_parts(self) -> (Sign, UBig) {
let sign = self.0.sign();
let mag = self.0.with_sign(Sign::Positive);
(sign, UBig(mag))
}
/// Create an [IBig] from the [Sign] and [UBig] magnitude
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, Sign, UBig};
/// assert_eq!(IBig::from_parts(Sign::Positive, UBig::ZERO), IBig::ZERO);
/// assert_eq!(IBig::from_parts(Sign::Positive, UBig::ONE), IBig::ONE);
/// assert_eq!(IBig::from_parts(Sign::Negative, UBig::ONE), IBig::NEG_ONE);
/// ```
#[inline]
pub fn from_parts(sign: Sign, magnitude: UBig) -> Self {
IBig(magnitude.0.with_sign(sign))
}
/// Create an IBig from a [Sign] and a [DoubleWord][crate::DoubleWord]
///
/// # Examples
///
/// ```
/// # use dashu_int::{IBig, Sign, UBig};
/// const ONE: IBig = IBig::from_parts_const(Sign::Positive, 1);
/// assert_eq!(ONE, IBig::ONE);
/// const NEG_ONE: IBig = IBig::from_parts_const(Sign::Negative, 1);
/// assert_eq!(NEG_ONE, IBig::NEG_ONE);
/// ```
#[inline]
pub const fn from_parts_const(sign: Sign, dword: crate::DoubleWord) -> Self {
Self(Repr::from_dword(dword).with_sign(sign))
}
/// [IBig] with value 0
pub const ZERO: Self = Self(Repr::zero());
/// [IBig] with value 1
pub const ONE: Self = Self(Repr::one());
/// [IBig] with value -1
pub const NEG_ONE: Self = Self(Repr::neg_one());
/// Check whether the value is 0
///
/// # Examples
///
/// ```
/// # use dashu_int::IBig;
/// assert!(IBig::ZERO.is_zero());
/// assert!(!IBig::ONE.is_zero());
/// ```
#[inline]
pub const fn is_zero(&self) -> bool {
self.0.is_zero()
}
/// Check whether the value is 1
///
/// # Examples
///
/// ```
/// # use dashu_int::IBig;
/// assert!(!IBig::ZERO.is_one());
/// assert!(IBig::ONE.is_one());
/// ```
#[inline]
pub const fn is_one(&self) -> bool {
self.0.is_one()
}
}
// This custom implementation is necessary due to https://github.com/rust-lang/rust/issues/98374
impl Clone for IBig {
#[inline]
fn clone(&self) -> IBig {
IBig(self.0.clone())
}
#[inline]
fn clone_from(&mut self, source: &IBig) {
self.0.clone_from(&source.0)
}
}