1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use core::convert::TryInto;
use crate::{
error::{assert_finite, assert_limited_precision, panic_power_negative_base},
fbig::FBig,
repr::{Context, Repr, Word},
round::{Round, Rounded},
};
use dashu_base::{AbsOrd, Approximation::*, BitTest, DivRemEuclid, EstimatedLog2, Sign};
use dashu_int::IBig;
impl<R: Round, const B: Word> FBig<R, B> {
/// Raise the floating point number to an integer power.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// let a = DBig::from_str_native("-1.234")?;
/// assert_eq!(a.powi(10.into()), DBig::from_str_native("8.188")?);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn powi(&self, exp: IBig) -> FBig<R, B> {
self.context.powi(&self.repr, exp).value()
}
/// Raise the floating point number to an floating point power.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// let x = DBig::from_str_native("1.23")?;
/// let y = DBig::from_str_native("-4.56")?;
/// assert_eq!(x.powf(&y), DBig::from_str_native("0.389")?);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn powf(&self, exp: &Self) -> Self {
let context = Context::max(self.context, exp.context);
context.powf(&self.repr, &exp.repr).value()
}
/// Calculate the exponential function (`eˣ`) on the floating point number.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// let a = DBig::from_str_native("-1.234")?;
/// assert_eq!(a.exp(), DBig::from_str_native("0.2911")?);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn exp(&self) -> FBig<R, B> {
self.context.exp(&self.repr).value()
}
/// Calculate the exponential minus one function (`eˣ-1`) on the floating point number.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// let a = DBig::from_str_native("-0.1234")?;
/// assert_eq!(a.exp_m1(), DBig::from_str_native("-0.11609")?);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn exp_m1(&self) -> FBig<R, B> {
self.context.exp_m1(&self.repr).value()
}
}
// TODO: give the exact formulation of required guard bits
impl<R: Round> Context<R> {
/// Raise the floating point number to an integer power under this context.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// use dashu_base::Approximation::*;
/// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
///
/// let context = Context::<HalfAway>::new(2);
/// let a = DBig::from_str_native("-1.234")?;
/// assert_eq!(context.powi(&a.repr(), 10.into()), Inexact(DBig::from_str_native("8.2")?, AddOne));
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the precision is unlimited and the exponent is negative. In this case, the exact
/// result is likely to have infinite digits.
pub fn powi<const B: Word>(&self, base: &Repr<B>, exp: IBig) -> Rounded<FBig<R, B>> {
assert_finite(base);
let (exp_sign, exp) = exp.into_parts();
if exp_sign == Sign::Negative {
// if the exponent is negative, then negate the exponent
// note that do the inverse at last requires less guard bits
assert_limited_precision(self.precision); // TODO: we can allow this if the inverse is exact (only when significand is one?)
let guard_bits = self.precision.bit_len() * 2; // heuristic
let rev_context = Context::<R::Reverse>::new(self.precision + guard_bits);
let pow = rev_context.powi(base, exp.into()).value();
let inv = rev_context.repr_div(Repr::one(), pow.repr);
let repr = inv.and_then(|v| self.repr_round(v));
return repr.map(|v| FBig::new(v, *self));
}
if exp.is_zero() {
return Exact(FBig::ONE);
} else if exp.is_one() {
let repr = self.repr_round_ref(base);
return repr.map(|v| FBig::new(v, *self));
}
let work_context = if self.is_limited() {
// increase working precision when the exponent is large
let guard_digits = exp.bit_len() + self.precision.bit_len(); // heuristic
Context::<R>::new(self.precision + guard_digits)
} else {
Context::<R>::new(0)
};
// binary exponentiation from left to right
let mut p = exp.bit_len() - 2;
let mut res = work_context.sqr(base);
loop {
if exp.bit(p) {
res = res.and_then(|v| work_context.mul(v.repr(), base));
}
if p == 0 {
break;
}
p -= 1;
res = res.and_then(|v| work_context.sqr(v.repr()));
}
res.and_then(|v| v.with_precision(self.precision))
}
/// Raise the floating point number to an floating point power under this context.
///
/// Note that this method will not rely on [FBig::powi] even if the `exp` is actually an integer.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// use dashu_base::Approximation::*;
/// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
///
/// let context = Context::<HalfAway>::new(2);
/// let x = DBig::from_str_native("1.23")?;
/// let y = DBig::from_str_native("-4.56")?;
/// assert_eq!(context.powf(&x.repr(), &y.repr()), Inexact(DBig::from_str_native("0.39")?, AddOne));
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the precision is unlimited.
pub fn powf<const B: Word>(&self, base: &Repr<B>, exp: &Repr<B>) -> Rounded<FBig<R, B>> {
assert_finite(base);
assert_limited_precision(self.precision); // TODO: we can allow it if exp is integer
// shortcuts
if exp.is_zero() {
return Exact(FBig::ONE);
} else if exp.is_one() {
let repr = self.repr_round_ref(base);
return repr.map(|v| FBig::new(v, *self));
} else if base.is_zero() {
return Exact(FBig::ZERO);
}
if base.sign() == Sign::Negative {
// TODO: we should allow negative base when exp is an integer
panic_power_negative_base()
}
// x^y = exp(y*ln(x)), use a simple rule for guard bits
let guard_digits = 10 + self.precision.log2_est() as usize;
let work_context = Context::<R>::new(self.precision + guard_digits);
let res = work_context
.ln(base)
.and_then(|v| work_context.mul(&v.repr, exp))
.and_then(|v| work_context.exp(&v.repr));
res.and_then(|v| v.with_precision(self.precision))
}
/// Calculate the exponential function (`eˣ`) on the floating point number under this context.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// use dashu_base::Approximation::*;
/// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
///
/// let context = Context::<HalfAway>::new(2);
/// let a = DBig::from_str_native("-1.234")?;
/// assert_eq!(context.exp(&a.repr()), Inexact(DBig::from_str_native("0.29")?, NoOp));
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn exp<const B: Word>(&self, x: &Repr<B>) -> Rounded<FBig<R, B>> {
self.exp_internal(x, false)
}
/// Calculate the exponential minus one function (`eˣ-1`) on the floating point number under this context.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// use dashu_base::Approximation::*;
/// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
///
/// let context = Context::<HalfAway>::new(2);
/// let a = DBig::from_str_native("-0.1234")?;
/// assert_eq!(context.exp_m1(&a.repr()), Inexact(DBig::from_str_native("-0.12")?, SubOne));
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn exp_m1<const B: Word>(&self, x: &Repr<B>) -> Rounded<FBig<R, B>> {
self.exp_internal(x, true)
}
// TODO: change reduction to (x - s log2) / 2ⁿ, so that the final powering is always base 2, and doesn't depends on powi.
// the powering exp(r)^(2ⁿ) could be optimized by noticing (1+x)^2 - 1 = x^2 + 2x
// consider this change after having a benchmark
fn exp_internal<const B: Word>(&self, x: &Repr<B>, minus_one: bool) -> Rounded<FBig<R, B>> {
assert_finite(x);
assert_limited_precision(self.precision);
if x.is_zero() {
return match minus_one {
false => Exact(FBig::ONE),
true => Exact(FBig::ZERO),
};
}
// A simple algorithm:
// - let r = (x - s logB) / Bⁿ, where s = floor(x / logB), such that r < B⁻ⁿ.
// - if the target precision is p digits, then there're only about p/m terms in Tyler series
// - finally, exp(x) = Bˢ * exp(r)^(Bⁿ)
// - the optimal n is √p as given by MPFR
// Maclaurin series: exp(r) = 1 + Σ(rⁱ/i!)
// There will be about p/log_B(r) summations when calculating the series, to prevent
// loss of significant, we needs about log_B(p) guard digits.
let series_guard_digits = (self.precision.log2_est() / B.log2_est()) as usize + 2;
let pow_guard_digits = (self.precision.bit_len() as f32 * B.log2_est() * 2.) as usize; // heuristic
let work_precision;
// When minus_one is true and |x| < 1/B, the input is fed into the Maclaurin series without scaling
let no_scaling = minus_one && x.log2_est() < -B.log2_est();
let (s, n, r) = if no_scaling {
// if minus_one is true and x is already small (x < 1/B),
// then directly evaluate the Maclaurin series without scaling
if x.sign() == Sign::Negative {
// extra digits are required to prevent cancellation during the summation
work_precision = self.precision + 2 * series_guard_digits;
} else {
work_precision = self.precision + series_guard_digits;
}
let context = Context::<R>::new(work_precision);
(0, 0, FBig::new(context.repr_round_ref(x).value(), context))
} else {
work_precision = self.precision + series_guard_digits + pow_guard_digits;
let context = Context::<R>::new(work_precision);
let x = FBig::new(context.repr_round_ref(x).value(), context);
let logb = context.ln_base::<B>();
let (s, r) = x.div_rem_euclid(logb);
// here m is roughly equal to sqrt(self.precision)
let n = 1usize << (self.precision.bit_len() / 2);
let s: isize = s.try_into().expect("exponent is too large");
(s, n, r)
};
let r = r >> n as isize;
let mut factorial = IBig::ONE;
let mut pow = r.clone();
let mut sum = if no_scaling {
r.clone()
} else {
FBig::ONE + &r
};
let mut k = 2;
loop {
factorial *= k;
pow *= &r;
let increase = &pow / &factorial;
if increase.abs_cmp(&sum.sub_ulp()).is_le() {
break;
}
sum += increase;
k += 1;
}
if no_scaling {
sum.with_precision(self.precision)
} else if minus_one {
// add extra digits to compensate for the subtraction
Context::<R>::new(self.precision + self.precision / 8 + 1) // heuristic
.powi(sum.repr(), Repr::<B>::BASE.pow(n).into())
.map(|v| (v << s) - FBig::ONE)
.and_then(|v| v.with_precision(self.precision))
} else {
self.powi(sum.repr(), Repr::<B>::BASE.pow(n).into())
.map(|v| v << s)
}
}
}