1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::nfa::{Nfa, NfaState};
use std::collections::HashMap;
use std::iter;

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Regex {
    pub tree: RegexTree,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub enum RegexTree {
    Sequence(Vec<RegexTree>),
    Alt(Vec<RegexTree>),
    Repeat(Box<RegexTree>),
    Char(RegexChar),
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub enum RegexChar {
    Grapheme(String),
    Epsilon,
    Empty,
}

#[derive(Clone, Debug)]
struct StateCounter {
    state: usize,
}

impl StateCounter {
    fn new() -> Self {
        Self { state: 0 }
    }

    fn next(&mut self) -> usize {
        let old = self.state;
        self.state += 1;
        old
    }

    fn peek(&self) -> usize {
        self.state
    }
}

impl Regex {
    /// Converts this regular expression to a NFA. This is the only operation available to regular expressions.
    /// To check if a string is accepted by this regular expression, one should convert it to a NFA and then check
    /// using that NFA. Note that the resulting NFA may be quite large, so converting it to a DFA may optimize it.
    pub fn to_nfa(self) -> Nfa {
        // Final accepting state is 0
        // Initial state is 1
        let mut counter = StateCounter::new();

        let mut char_map = HashMap::new();
        let mut idx_acc = 0..;
        let mut grapheme_idx =
            |g: String| -> usize { *char_map.entry(g).or_insert_with(|| idx_acc.next().unwrap()) };

        let accepting_state = NfaState {
            name: format!("{}", counter.next()),
            initial: false,
            accepting: true,
            epsilon_transitions: vec![],
            transitions: vec![],
        };

        // The initial state should send to the first thing in the tree
        let initial_state = NfaState {
            name: format!("{}", counter.next()),
            initial: true,
            accepting: false,
            epsilon_transitions: vec![counter.peek()],
            transitions: vec![],
        };

        let states = {
            let mut tree_states = Self::tree_to_nfa(self.tree, &mut counter, &mut grapheme_idx, 0);
            let mut all_states = Vec::with_capacity(tree_states.len() + 2);
            all_states.push(accepting_state); // state 0
            all_states.push(initial_state); // state 1
            all_states.append(&mut tree_states);
            // need to extend all transition tables to alphabet length
            all_states
                .iter_mut()
                .for_each(|s| s.transitions.resize(char_map.len(), vec![]));
            all_states
        };

        let alphabet = {
            let mut sorted_map = char_map.into_iter().collect::<Vec<_>>();
            sorted_map.sort_by_key(|(_, i)| *i);
            sorted_map.into_iter().map(|(s, _)| s).collect()
        };

        Nfa {
            alphabet,
            states,
            initial_state: 1,
        }
    }

    /// We turn a tree to a NFA recursively. `counter` is used to get the number of the next state.
    /// `char_idx` gives the index of a given character in the alphabet (and inserts the character
    /// if it didn't exist already). `send_to` is the state that the subtree should transition to
    /// if successful.
    fn tree_to_nfa(
        tree: RegexTree,
        counter: &mut StateCounter,
        grapheme_idx: &mut impl FnMut(String) -> usize,
        send_to: usize,
    ) -> Vec<NfaState> {
        let incoming_state_idx = counter.next();
        let mut incoming_state = NfaState {
            name: format!("{incoming_state_idx}"),
            initial: false,
            accepting: false,
            epsilon_transitions: vec![],
            transitions: vec![],
        };

        match tree {
            RegexTree::Sequence(seq) => {
                if seq.is_empty() {
                    incoming_state.epsilon_transitions.push(send_to);
                    vec![incoming_state]
                } else {
                    incoming_state.epsilon_transitions.push(counter.state + 1);
                    let seq_len = seq.len();
                    let mut states = seq
                        .into_iter()
                        .enumerate()
                        .flat_map(|(idx, subtree)| {
                            let after_state_idx = counter.next();
                            let mut after_state = NfaState {
                                name: format!("{}", after_state_idx),
                                initial: false,
                                accepting: false,
                                epsilon_transitions: vec![],
                                transitions: vec![],
                            };
                            let new_states =
                                Self::tree_to_nfa(subtree, counter, grapheme_idx, after_state_idx);
                            if idx + 1 == seq_len {
                                after_state.epsilon_transitions.push(send_to);
                            } else {
                                after_state.epsilon_transitions.push(counter.state + 1);
                            }
                            iter::once(after_state).chain(new_states)
                        })
                        .collect::<Vec<_>>();
                    let mut ret = vec![incoming_state];
                    ret.append(&mut states);
                    ret
                }
            }
            RegexTree::Alt(alt) => {
                let mut additional = alt
                    .into_iter()
                    .flat_map(|tree| {
                        incoming_state.epsilon_transitions.push(counter.peek());
                        Self::tree_to_nfa(tree, counter, grapheme_idx, send_to)
                    })
                    .collect::<Vec<_>>();
                let mut ret = Vec::with_capacity(1 + additional.len());
                ret.push(incoming_state);
                ret.append(&mut additional);
                ret
            }
            RegexTree::Repeat(r) => {
                incoming_state.epsilon_transitions = vec![counter.peek(), send_to];
                let mut additional =
                    Self::tree_to_nfa(*r, counter, grapheme_idx, incoming_state_idx);
                let mut ret = Vec::with_capacity(additional.len() + 1);
                ret.push(incoming_state);
                ret.append(&mut additional);
                ret
            }
            RegexTree::Char(c) => match c {
                RegexChar::Grapheme(g) => {
                    // If we only accept one char, make sure our incoming state
                    // transition to outgoing state on that char only
                    let cidx = grapheme_idx(g); // our character index

                    // if we get index 1, we want {{}, {target}} in our transition table
                    let mut transition_vec = vec![vec![]; cidx];
                    transition_vec.push(vec![send_to]);
                    incoming_state.transitions = transition_vec;
                    vec![incoming_state]
                }
                RegexChar::Epsilon => {
                    // If we accept epsilon char, just transition to send to immediately
                    incoming_state.epsilon_transitions = vec![send_to];
                    vec![incoming_state]
                }
                RegexChar::Empty => {
                    vec![incoming_state]
                }
            },
        }
    }
}