1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
use core::num::NonZeroU128;
/// A high performance non-cryptographic random number generator.
#[derive(Clone)]
pub struct Rng { state: NonZeroU128 }
#[inline(always)]
const fn get_chunk<T, const N: usize>(slice: &[T], index: usize) -> &[T; N] {
assert!(index <= slice.len() && N <= slice.len() - index);
unsafe { &*slice.as_ptr().add(index).cast::<[T; N]>() }
}
#[inline(always)]
fn get_chunk_mut<T, const N: usize>(slice: &mut [T], index: usize) -> &mut [T; N] {
assert!(index <= slice.len() && N <= slice.len() - index);
unsafe { &mut *slice.as_mut_ptr().add(index).cast::<[T; N]>() }
}
#[inline(always)]
const fn hash(x: NonZeroU128) -> NonZeroU128 {
// The hash uses the multiplier
//
// M = round_nearest_odd(EULER_MASCHERONI * 2¹²⁸)
//
// The Euler-Mascheroni constant was selected because it is a well-known
// number in the range (0.5, 1.0).
const M: u128 = 0x93c4_67e3_7db0_c7a4_d1be_3f81_0152_cb57;
let x = x.get();
let x = x.wrapping_mul(M);
let x = x.swap_bytes();
let x = x.wrapping_mul(M);
let x = x.swap_bytes();
let x = x.wrapping_mul(M);
unsafe { NonZeroU128::new_unchecked(x) }
}
impl Rng {
/// Creates a random number generator with an initial state derived by
/// hashing the given byte array.
pub const fn new(seed: [u8; 15]) -> Self {
let x = u64::from_le_bytes(*get_chunk(&seed, 0));
let y = u64::from_le_bytes(*get_chunk(&seed, 7));
let s = x as u128 | ((y >> 8) as u128) << 64;
let s = s | 1 << 120;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Self { state: hash(s) }
}
/// Creates a random number generator with an initial state derived by
/// hashing the given `u64` seed.
pub const fn from_u64(seed: u64) -> Self {
let s = seed as u128;
let s = s | 1 << 64;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Self { state: hash(s) }
}
/// Retrieves the current state of the random number generator.
#[inline(always)]
pub const fn state(&self) -> NonZeroU128 {
self.state
}
/// Creates a random number generator with a particular initial state.
///
/// <div class="warning">
///
/// If you want to deterministically initialize a generator from a small
/// integer or other weak seed, you should *NOT* use this function and should
/// instead use [Rng::new] or [Rng::from_u64] which hash their arguments.
///
/// </div>
#[inline(always)]
pub const fn from_state(state: NonZeroU128) -> Self {
Self { state }
}
/// Creates a random number generator with entropy retrieved from the
/// operating system.
#[cfg(feature = "getrandom")]
#[inline(never)]
#[cold]
pub fn from_entropy() -> Self {
let mut buf = [0u8; 16];
getrandom::getrandom(&mut buf).expect("getrandom::getrandom failed!");
let s = u128::from_le_bytes(buf);
let s = s | 1;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Self { state: s }
}
/// Splits off a new random number generator that may be used along with the
/// original.
#[inline(always)]
pub fn split(&mut self) -> Self {
let x = self.u64();
let y = self.u64();
let s = x as u128 ^ (y as u128) << 64;
let s = s | 1;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Self { state: s }
}
/// Samples a `bool` from the Bernoulli distribution where `true` appears
/// with probability approximately equal to `p`.
///
/// Probabilities `p` <= 0 or NaN are treated as 0, and `p` >= 1 are
/// treated as 1.
#[inline(always)]
pub fn bernoulli(&mut self, p: f64) -> bool {
// For every `p` that is representable as a `f64`, is in the range [0, 1],
// and is an exact multiple of 2⁻¹²⁸, this procedure samples exactly from
// the corresponding Bernoulli distribution, given the (false!) assumption
// that `dandelion::u64` samples exactly uniformly.
//
// In particular `bernoulli(0)` is always `false` and `bernoulli(1)` is
// always `true`.
let x = self.u64();
let e = 1022 - x.trailing_zeros() as u64;
let t = f64::from_bits((e << 52) + (x >> 12));
t < p
}
/// Samples a `bool` from the uniform distribution.
#[inline(always)]
pub fn bool(&mut self) -> bool {
self.i64() < 0
}
/// Samples a `i32` from the uniform distribution.
#[inline(always)]
pub fn i32(&mut self) -> i32 {
self.u64() as i32
}
/// Samples a `i64` from the uniform distribution.
#[inline(always)]
pub fn i64(&mut self) -> i64 {
self.u64() as i64
}
/// Samples a `u32` from the uniform distribution.
#[inline(always)]
pub fn u32(&mut self) -> u32 {
self.u64() as u32
}
/// Samples a `u64` from the uniform distribution.
#[inline(always)]
pub fn u64(&mut self) -> u64 {
let s = self.state.get();
let x = s as u64;
let y = (s >> 64) as u64;
let u = y ^ y >> 19;
let v = x ^ y.rotate_right(7);
let w = x as u128 * x as u128;
let z = y.wrapping_add(w as u64 ^ (w >> 64) as u64);
let s = u as u128 ^ (v as u128) << 64;
self.state = unsafe { NonZeroU128::new_unchecked(s) };
z
}
/// Samples a `u32` from the uniform distribution over the range `0 ... n`.
///
/// The upper bound is inclusive.
#[inline(always)]
pub fn bounded_u32(&mut self, n: u32) -> u32 {
// Cf. `bounded_u64`.
let x = self.u64() as u128;
let y = self.u64() as u128;
let n = n as u128;
let u = x * n + x >> 64;
let v = y * n + y;
let z = u + v >> 64;
z as u32
}
/// Samples a `u64` from the uniform distribution over the range `0 ... n`.
///
/// The upper bound is inclusive.
#[inline(always)]
pub fn bounded_u64(&mut self, n: u64) -> u64 {
// This procedure computes
//
// floor((k * n + k) / 2¹²⁸)
//
// where k is sampled approximately uniformly from 0 ... 2¹²⁸ - 1. The
// result is a very low bias sample from the desired distribution.
// y x x y 0 v v 0
// * n * n * n + u _
// + y x -------> + x + y 0
// ------- ------- ------- -------
// z _ _ u _ v v 0 z _ _
let x = self.u64() as u128;
let y = self.u64() as u128;
let n = n as u128;
let u = x * n + x >> 64;
let v = y * n + y;
let z = u + v >> 64;
z as u64
}
/// Samples a `i32` from the uniform distribution over the range `lo ... hi`.
///
/// The lower and upper bounds are inclusive, and the range can wrap around
/// from `i32::MAX` to `i32::MIN`.
#[inline(always)]
pub fn between_i32(&mut self, lo: i32, hi: i32) -> i32 {
self.between_u32(lo as u32, hi as u32) as i32
}
/// Samples a `i64` from the uniform distribution over the range `lo ... hi`.
///
/// The lower and upper bounds are inclusive, and the range can wrap around
/// from `i64::MAX` to `i64::MIN`.
#[inline(always)]
pub fn between_i64(&mut self, lo: i64, hi: i64) -> i64 {
self.between_u64(lo as u64, hi as u64) as i64
}
/// Samples a `u32` from the uniform distribution over the range `lo ... hi`.
///
/// The lower and upper bounds are inclusive, and the range can wrap around
/// from `u32::MAX` to `u32::MIN`.
#[inline(always)]
pub fn between_u32(&mut self, lo: u32, hi: u32) -> u32 {
lo.wrapping_add(self.bounded_u32(hi.wrapping_sub(lo)))
}
/// Samples a `u64` from the uniform distribution over the range `lo ... hi`.
///
/// The lower and upper bounds are inclusive, and the range can wrap around
/// from `u64::MAX` to `u64::MIN`.
#[inline(always)]
pub fn between_u64(&mut self, lo: u64, hi: u64) -> u64 {
lo.wrapping_add(self.bounded_u64(hi.wrapping_sub(lo)))
}
/// Samples a `f32` from a distribution that approximates the uniform
/// distribution over the real interval [0, 1].
///
/// The distribution is the same as the one produced by the following
/// procedure:
///
/// - Sample a real number from the uniform distribution on [0, 1].
/// - Round to the nearest multiple of 2⁻⁶³.
/// - Round to a `f32` using the default rounding mode.
///
/// An output zero will always be +0, never -0.
#[inline(always)]
pub fn f32(&mut self) -> f32 {
let x = self.i64();
let x = f32::from_bits(0x2000_0000) * x as f32;
f32::from_bits(0x7fff_ffff & x.to_bits())
}
/// Samples a `f64` from a distribution that approximates the uniform
/// distribution over the real interval [0, 1].
///
/// The distribution is the same as the one produced by the following
/// procedure:
///
/// - Sample a real number from the uniform distribution on [0, 1].
/// - Round to the nearest multiple of 2⁻⁶³.
/// - Round to a `f64` using the default rounding mode.
///
/// An output zero will always be +0, never -0.
#[inline(always)]
pub fn f64(&mut self) -> f64 {
// The conversion into a `f64` is two instructions on aarch64:
//
// scvtf d0, x8, #63
// fabs d0, d0
let x = self.i64();
let x = f64::from_bits(0x3c00_0000_0000_0000) * x as f64;
f64::from_bits(0x7fff_ffff_ffff_ffff & x.to_bits())
}
#[inline(always)]
fn bytes_inlined(&mut self, dst: &mut [u8]) {
let mut dst = dst;
if dst.len() == 0 {
return;
}
while dst.len() >= 17 {
let x = self.u64();
let y = self.u64();
*get_chunk_mut(dst, 0) = x.to_le_bytes();
*get_chunk_mut(dst, 8) = y.to_le_bytes();
dst = &mut dst[16 ..];
}
if dst.len() >= 9 {
let x = self.u64();
*get_chunk_mut(dst, 0) = x.to_le_bytes();
dst = &mut dst[8 ..];
}
let x = self.u64();
match dst.len() {
1 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 1>(&x.to_le_bytes(), 0),
2 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 2>(&x.to_le_bytes(), 0),
3 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 3>(&x.to_le_bytes(), 0),
4 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 4>(&x.to_le_bytes(), 0),
5 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 5>(&x.to_le_bytes(), 0),
6 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 6>(&x.to_le_bytes(), 0),
7 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 7>(&x.to_le_bytes(), 0),
8 => *get_chunk_mut(dst, 0) = *get_chunk::<u8, 8>(&x.to_le_bytes(), 0),
_ => unsafe { core::hint::unreachable_unchecked() }
}
}
/// Fills the provided buffer with independent uniformly distributed `u8`s.
pub fn bytes(&mut self, dst: &mut [u8]) {
self.bytes_inlined(dst);
}
/// Samples an array of independent uniformly distributed `u8`s.
pub fn byte_array<const N: usize>(&mut self) -> [u8; N] {
let mut buf = [0u8; N];
self.bytes_inlined(&mut buf);
buf
}
}
#[cfg(feature = "rand_core")]
impl rand_core::RngCore for Rng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.u64()
}
fn fill_bytes(&mut self, dst: &mut [u8]) {
self.bytes(dst)
}
fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), rand_core::Error> {
self.bytes(dst);
Ok(())
}
}
#[cfg(feature = "rand_core")]
impl rand_core::SeedableRng for Rng {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
let s = u128::from_le_bytes(seed);
let s = s | 1;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Self::from_state(s)
}
fn seed_from_u64(seed: u64) -> Self {
Self::from_u64(seed)
}
fn from_rng<T>(rng: T) -> Result<Self, rand_core::Error>
where
T: rand_core::RngCore
{
let mut rng = rng;
let x = rng.next_u64();
let y = rng.next_u64();
let s = x as u128 ^ (y as u128) << 64;
let s = s | 1;
let s = unsafe { NonZeroU128::new_unchecked(s) };
Ok(Self::from_state(s))
}
}
#[cfg(feature = "thread_local")]
pub mod thread_local {
//! Access a thread-local random number generator.
//!
//! If you want to generate many random numbers, you should create a local
//! generator with [dandelion::thread_local::split](split).
use std::cell::Cell;
use std::num::NonZeroU128;
use crate::Rng;
std::thread_local! {
static RNG: Cell<Option<NonZeroU128>> = const {
Cell::new(None)
};
}
// The function `with` is *NOT* logically re-entrant, so we must not expose
// it publicly.
#[inline(always)]
fn with<F, T>(f: F) -> T
where
F: FnOnce(&mut Rng) -> T
{
RNG.with(|cell| {
let mut rng =
if let Some(s) = cell.get() {
Rng::from_state(s)
} else {
Rng::from_entropy()
};
let x = f(&mut rng);
cell.set(Some(rng.state()));
x
})
}
/// See [Rng::split].
pub fn split() -> Rng {
with(|rng| rng.split())
}
/// See [Rng::bernoulli].
pub fn bernoulli(p: f64) -> bool {
with(|rng| rng.bernoulli(p))
}
/// See [Rng::bool].
pub fn bool() -> bool {
with(|rng| rng.bool())
}
/// See [Rng::i32].
pub fn i32() -> i32 {
with(|rng| rng.i32())
}
/// See [Rng::i64].
pub fn i64() -> i64 {
with(|rng| rng.i64())
}
/// See [Rng::u32].
pub fn u32() -> u32 {
with(|rng| rng.u32())
}
/// See [Rng::u64].
pub fn u64() -> u64 {
with(|rng| rng.u64())
}
/// See [Rng::bounded_u32].
pub fn bounded_u32(n: u32) -> u32 {
with(|rng| rng.bounded_u32(n))
}
/// See [Rng::bounded_u64].
pub fn bounded_u64(n: u64) -> u64 {
with(|rng| rng.bounded_u64(n))
}
/// See [Rng::between_i32].
pub fn between_i32(lo: i32, hi: i32) -> i32 {
with(|rng| rng.between_i32(lo, hi))
}
/// See [Rng::between_i64].
pub fn between_i64(lo: i64, hi: i64) -> i64 {
with(|rng| rng.between_i64(lo, hi))
}
/// See [Rng::between_u32].
pub fn between_u32(lo: u32, hi: u32) -> u32 {
with(|rng| rng.between_u32(lo, hi))
}
/// See [Rng::between_u64].
pub fn between_u64(lo: u64, hi: u64) -> u64 {
with(|rng| rng.between_u64(lo, hi))
}
/// See [Rng::f32].
pub fn f32() -> f32 {
with(|rng| rng.f32())
}
/// See [Rng::f64].
pub fn f64() -> f64 {
with(|rng| rng.f64())
}
/// See [Rng::bytes].
pub fn bytes(dst: &mut [u8]) {
with(|rng| rng.bytes(dst))
}
/// See [Rng::byte_array].
pub fn byte_array<const N: usize>() -> [u8; N] {
with(|rng| rng.byte_array())
}
}