# DAA Prime Trainer
[](https://crates.io/crates/daa-prime-trainer)
[](https://docs.rs/daa-prime-trainer)
[](https://github.com/yourusername/daa/blob/main/LICENSE)
Distributed SGD/FSDP trainer implementation for the Prime distributed machine learning framework. Provides fault-tolerant, scalable training coordination with built-in incentive mechanisms through DAA ecosystem integration.
## Overview
DAA Prime Trainer implements a robust distributed training node that participates in federated learning and distributed training protocols. It provides:
- **Distributed SGD**: Scalable stochastic gradient descent across multiple nodes
- **FSDP Support**: Fully Sharded Data Parallel training for large models
- **Fault Tolerance**: Automatic recovery from node failures and network partitions
- **DAA Integration**: Token-based incentives and governance participation
- **Flexible Architecture**: Pluggable optimizers and aggregation strategies
## Features
- 🚀 **High Performance**: Optimized gradient computation and communication
- 🔄 **Fault Tolerant**: Automatic failure detection and recovery
- 🏆 **Incentivized**: Token rewards for quality contributions
- 📊 **Comprehensive Metrics**: Detailed training and performance monitoring
- 🔒 **Secure**: Cryptographic verification of gradient updates
- 🌐 **Network Agnostic**: Works with any transport layer
## Installation
Add this to your `Cargo.toml`:
```toml
[dependencies]
daa-prime-trainer = "0.2.1"
daa-prime-core = "0.2.1"
daa-prime-dht = "0.2.1"
tokio = { version = "1.0", features = ["full"] }
```
## Quick Start
### Basic Training Node
```rust
use daa_prime_trainer::{TrainerNode, TrainingConfig};
use anyhow::Result;
#[tokio::main]
async fn main() -> Result<()> {
// Create a trainer node
let trainer = TrainerNode::new("trainer-001".to_string()).await?;
// Start training process
trainer.start_training().await?;
// Monitor training status
let status = trainer.get_status().await?;
println!("Training status: {:?}", status);
Ok(())
}
```
### Custom Training Configuration
```rust
use daa_prime_trainer::{TrainerNode, TrainingConfig};
let config = TrainingConfig {
batch_size: 64,
learning_rate: 0.001,
max_epochs: 100,
};
// Create trainer with custom configuration
let trainer = TrainerNode::with_config("trainer-001".to_string(), config).await?;
```
### Running as Binary
The crate also provides a standalone binary for direct execution:
```bash
# Start a trainer node
cargo run --bin prime-trainer
# Or install and run
cargo install daa-prime-trainer
prime-trainer --node-id trainer-001 --config config.json
```
## Core Concepts
### Training Lifecycle
```rust
use daa_prime_trainer::{TrainerNode, TrainingPhase};
let trainer = TrainerNode::new("trainer-001".to_string()).await?;
// Training goes through several phases:
// 1. Initialization - Set up local model and data
// 2. Gradient Computation - Compute local gradients
// 3. Communication - Share gradients with coordinators
// 4. Aggregation - Receive aggregated updates
// 5. Model Update - Apply updates to local model
trainer.start_training().await?;
```
### Distributed Gradient Computation
```rust
use daa_prime_trainer::gradient::{GradientComputer, LocalGradients};
use daa_prime_core::GradientUpdate;
// Compute gradients on local data
let computer = GradientComputer::new();
let local_gradients = computer.compute_batch_gradients(&data_batch).await?;
// Create gradient update for sharing
let update = GradientUpdate {
node_id: trainer.node_id(),
model_version: trainer.current_model_version(),
round: trainer.current_round(),
gradients: local_gradients.into_hashmap(),
metrics: trainer.get_training_metrics(),
timestamp: current_timestamp(),
};
```
### Fault Tolerance
```rust
use daa_prime_trainer::{TrainerNode, FaultToleranceConfig};
let fault_config = FaultToleranceConfig {
checkpoint_interval: Duration::from_secs(300), // 5 minutes
max_retries: 3,
timeout: Duration::from_secs(30),
recovery_strategy: RecoveryStrategy::RestoreFromCheckpoint,
};
let trainer = TrainerNode::with_fault_tolerance(
"trainer-001".to_string(),
fault_config
).await?;
```
## Advanced Usage
### Custom Data Loading
```rust
use daa_prime_trainer::{TrainerNode, DataLoader};
use async_trait::async_trait;
// Implement custom data loader
struct CustomDataLoader {
data_path: String,
}
#[async_trait]
impl DataLoader for CustomDataLoader {
type Item = (Vec<f32>, Vec<f32>); // (features, labels)
async fn load_batch(&self, batch_size: usize) -> Result<Vec<Self::Item>> {
// Load data from custom source (database, API, etc.)
// This is a simplified example
let mut batch = Vec::new();
for _ in 0..batch_size {
let features = vec![0.5; 784]; // Mock MNIST features
let labels = vec![1.0, 0.0, 0.0]; // One-hot encoded label
batch.push((features, labels));
}
Ok(batch)
}
async fn size(&self) -> Result<usize> {
// Return total dataset size
Ok(60000) // Mock MNIST size
}
}
// Use custom data loader with trainer
let data_loader = CustomDataLoader {
data_path: "/path/to/data".to_string(),
};
let trainer = TrainerNode::with_data_loader("trainer-001".to_string(), data_loader).await?;
```
### Federated Learning
```rust
use daa_prime_trainer::{TrainerNode, FederatedConfig};
use daa_prime_core::{AggregationStrategy, OptimizerType};
// Configure for federated learning
let fed_config = FederatedConfig {
aggregation_strategy: AggregationStrategy::FederatedAveraging,
local_epochs: 5, // Local training epochs per round
participation_rate: 0.8, // Fraction of clients per round
min_clients: 10, // Minimum clients for aggregation
};
let trainer = TrainerNode::with_federated_config(
"trainer-001".to_string(),
fed_config
).await?;
// Participate in federated training rounds
trainer.join_federated_round(42).await?;
```
### Model Checkpointing
```rust
use daa_prime_trainer::{TrainerNode, CheckpointManager};
let trainer = TrainerNode::new("trainer-001".to_string()).await?;
// Save checkpoint
trainer.save_checkpoint("checkpoint_epoch_10").await?;
// Load checkpoint
trainer.load_checkpoint("checkpoint_epoch_10").await?;
// List available checkpoints
let checkpoints = trainer.list_checkpoints().await?;
for checkpoint in checkpoints {
println!("Checkpoint: {} (epoch {})", checkpoint.name, checkpoint.epoch);
}
```
### Performance Monitoring
```rust
use daa_prime_trainer::{TrainerNode, MetricsCollector};
let trainer = TrainerNode::new("trainer-001".to_string()).await?;
// Start metrics collection
let metrics_collector = MetricsCollector::new();
trainer.set_metrics_collector(metrics_collector).await?;
// Get real-time metrics
loop {
let metrics = trainer.get_training_metrics().await?;
println!("Loss: {:.4}, Accuracy: {:.4}, Throughput: {:.1} samples/s",
metrics.loss,
metrics.accuracy,
metrics.samples_per_second
);
tokio::time::sleep(Duration::from_secs(10)).await;
}
```
### Integration with DHT
```rust
use daa_prime_trainer::TrainerNode;
use daa_prime_dht::{Dht, DhtConfig};
// Create trainer with DHT integration
let dht = Dht::new(peer_id, DhtConfig::default());
let trainer = TrainerNode::with_dht("trainer-001".to_string(), dht).await?;
// Trainer will automatically:
// - Store training checkpoints in DHT
// - Retrieve model updates from DHT
// - Share gradient updates via DHT
// - Discover other training nodes
```
## Configuration
### Training Parameters
```rust
use daa_prime_trainer::TrainingConfig;
let config = TrainingConfig {
// Basic training parameters
batch_size: 32,
learning_rate: 0.001,
max_epochs: 100,
// Advanced parameters
optimizer: OptimizerType::AdamW {
beta1: 0.9,
beta2: 0.999,
weight_decay: 0.01,
},
scheduler: SchedulerType::CosineAnnealing {
t_max: 100,
eta_min: 0.0001,
},
// Distributed training
gradient_clipping: Some(1.0),
aggregation_strategy: AggregationStrategy::FederatedAveraging,
// Fault tolerance
checkpoint_interval: Duration::from_secs(300),
max_retries: 3,
};
```
### Network Configuration
```rust
use daa_prime_trainer::NetworkConfig;
let network_config = NetworkConfig {
// Communication settings
max_message_size: 1024 * 1024, // 1MB
timeout: Duration::from_secs(30),
retry_interval: Duration::from_secs(5),
// Compression
enable_compression: true,
compression_level: 6,
// Security
enable_encryption: true,
verify_signatures: true,
};
```
## Command Line Interface
The trainer can be run as a standalone binary:
```bash
# Basic usage
prime-trainer --node-id trainer-001
# With custom configuration
prime-trainer --node-id trainer-001 --config config.json
# Specify coordinator endpoints
prime-trainer --node-id trainer-001 --coordinators coord1:8080,coord2:8080
# Enable verbose logging
prime-trainer --node-id trainer-001 --log-level debug
# Set data directory
prime-trainer --node-id trainer-001 --data-dir /path/to/data
# Join specific training round
prime-trainer --node-id trainer-001 --round 42
```
### Configuration File
```json
{
"training": {
"batch_size": 64,
"learning_rate": 0.001,
"max_epochs": 100,
"optimizer": {
"type": "AdamW",
"beta1": 0.9,
"beta2": 0.999,
"weight_decay": 0.01
}
},
"network": {
"timeout": 30,
"max_message_size": 1048576,
"enable_compression": true
},
"fault_tolerance": {
"checkpoint_interval": 300,
"max_retries": 3
}
}
```
## Testing
### Unit Tests
```rust
#[cfg(test)]
mod tests {
use super::*;
use daa_prime_trainer::test_utils::*;
#[tokio::test]
async fn test_trainer_creation() {
let trainer = TrainerNode::new("test-trainer".to_string()).await.unwrap();
let status = trainer.get_status().await.unwrap();
assert_eq!(status.node_id, "test-trainer");
assert_eq!(status.current_epoch, 0);
assert!(!status.is_training);
}
#[tokio::test]
async fn test_gradient_computation() {
let trainer = create_test_trainer().await;
let mock_data = create_mock_dataset(100);
let gradients = trainer.compute_gradients(&mock_data).await.unwrap();
assert!(!gradients.is_empty());
// Verify gradient properties
for (layer_name, gradient) in gradients {
assert!(!layer_name.is_empty());
assert!(!gradient.is_empty());
assert!(gradient.iter().all(|&x| x.is_finite()));
}
}
}
```
### Integration Tests
```rust
#[cfg(test)]
mod integration_tests {
use super::*;
use daa_prime_coordinator::CoordinatorNode;
#[tokio::test]
async fn test_distributed_training() {
// Start coordinator
let coordinator = CoordinatorNode::new(
"test-coordinator".to_string(),
CoordinatorConfig::default()
).await.unwrap();
// Start multiple trainers
let mut trainers = Vec::new();
for i in 0..3 {
let trainer = TrainerNode::new(format!("trainer-{}", i)).await.unwrap();
trainers.push(trainer);
}
// Run training round
for trainer in &trainers {
trainer.start_training().await.unwrap();
}
// Verify convergence
tokio::time::sleep(Duration::from_secs(10)).await;
for trainer in &trainers {
let metrics = trainer.get_training_metrics().await.unwrap();
assert!(metrics.loss < 1.0); // Should have decreased
}
}
}
```
### Property-Based Testing
```rust
use proptest::prelude::*;
proptest! {
#[test]
fn test_gradient_aggregation_properties(
gradients in prop::collection::vec(
prop::collection::hash_map(
"[a-zA-Z0-9_]+",
prop::collection::vec(-1.0f32..1.0f32, 1..100),
1..10
),
2..10
)
) {
let aggregated = aggregate_gradients(&gradients).unwrap();
// Properties to verify:
// 1. All gradient keys are preserved
// 2. Aggregated values are finite
// 3. Aggregated dimensions match input dimensions
for (key, values) in &aggregated {
assert!(!key.is_empty());
assert!(!values.is_empty());
assert!(values.iter().all(|&x| x.is_finite()));
}
}
}
```
## Performance Optimization
### Memory Management
```rust
use daa_prime_trainer::{TrainerNode, MemoryConfig};
let memory_config = MemoryConfig {
gradient_buffer_size: 1024 * 1024, // 1MB
model_cache_size: 512 * 1024 * 1024, // 512MB
enable_gradient_compression: true,
compression_ratio: 0.1, // 10x compression
};
let trainer = TrainerNode::with_memory_config(
"trainer-001".to_string(),
memory_config
).await?;
```
### Parallel Processing
```rust
use daa_prime_trainer::{TrainerNode, ParallelConfig};
use rayon::prelude::*;
let parallel_config = ParallelConfig {
gradient_computation_threads: num_cpus::get(),
data_loading_threads: 4,
network_io_threads: 2,
};
// Parallel gradient computation
let gradients: Vec<_> = data_batches
.par_iter()
.map(|batch| compute_batch_gradients(batch))
.collect();
```
### Benchmarking
```rust
#[cfg(test)]
mod benchmarks {
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use daa_prime_trainer::*;
fn bench_gradient_computation(c: &mut Criterion) {
let rt = tokio::runtime::Runtime::new().unwrap();
let trainer = rt.block_on(TrainerNode::new("bench-trainer".to_string())).unwrap();
c.bench_function("gradient_computation_1k_samples", |b| {
b.to_async(&rt).iter(|| async {
let data = create_mock_dataset(1000);
let gradients = trainer.compute_gradients(black_box(&data)).await.unwrap();
black_box(gradients);
});
});
}
criterion_group!(benches, bench_gradient_computation);
criterion_main!(benches);
}
```
## Troubleshooting
### Common Issues
1. **Training Divergence**
```rust
let grad_norm = calculate_gradient_norm(&gradients);
if grad_norm > 10.0 {
eprintln!("Warning: Large gradient norm detected: {}", grad_norm);
clip_gradients(&mut gradients, 1.0);
}
```
2. **Memory Issues**
```rust
let config = TrainingConfig {
enable_gradient_checkpointing: true,
..Default::default()
};
```
3. **Network Timeouts**
```rust
let network_config = NetworkConfig {
timeout: Duration::from_secs(120), retry_attempts: 5,
..Default::default()
};
```
## Roadmap
- [ ] GPU acceleration support
- [ ] Model parallel training (tensor parallelism)
- [ ] Advanced aggregation algorithms (Byzantine fault tolerance)
- [ ] Differential privacy integration
- [ ] Automated hyperparameter tuning
- [ ] Real-time model serving integration
## Contributing
Contributions are welcome! Please see our [Contributing Guide](../../CONTRIBUTING.md) for details.
## License
This project is licensed under the MIT License - see the [LICENSE](../../LICENSE) file for details.
## Related Crates
- [`daa-prime-core`](../prime-core): Core types and protocol definitions
- [`daa-prime-dht`](../prime-dht): Distributed hash table for model storage
- [`daa-prime-coordinator`](../prime-coordinator): Training coordination and governance
- [`daa-prime-cli`](../prime-cli): Command-line interface
## References
- [Federated Learning](https://arxiv.org/abs/1602.05629) - McMahan et al.
- [FSDP Paper](https://arxiv.org/abs/2101.01234) - Fully Sharded Data Parallel
- [Byzantine ML](https://arxiv.org/abs/1703.02757) - Byzantine-robust distributed learning
## Support
- 📖 [Documentation](https://docs.rs/daa-prime-trainer)
- 🐛 [Issue Tracker](https://github.com/yourusername/daa/issues)
- 💬 [Discussions](https://github.com/yourusername/daa/discussions)