cvr 0.1.2

A collection of image processing algorithms and tools remiscient of OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#![allow(clippy::upper_case_acronyms)]

//! `convert` houses functions for converting between the [`sRGB`](https://en.wikipedia.org/wiki/SRGB)
//! and linear color spaces but also supports conversions to the [`HSV`](https://en.wikipedia.org/wiki/HSL_and_HSV)
//! space and [grayscale](https://en.wikipedia.org/wiki/Grayscale).
//!
//! It's worth noting for those who are unfamiliar with the `sRGB` color space, it's one of the
//! most widely used and popular color spaces.
//!
//! If, for example, a user reads in a `.png` image file, it should be assumed that its color
//! values are encoded as `sRGB` and as such, the image doesn't natively support linear math.
//! This is because the `sRGB` space is encoded using a transfer function which gives it
//! non-linear properties so even simple operations like `r_1 + r_2` can have undesirable
//! results.
//!
//! Functions like `srgb_to_linear` aim to solve these kinds of issues while functions like
//! `linear_to_srgb` enable users to convert from something they can perform linear operations
//! on to something that they can make suitable for displaying and storing.
//!
//! Read more on `sRGB` and its usages [here](https://en.wikipedia.org/wiki/SRGB#Usage).
//!
//! # How to Convert `sRGB` to Linear
//!
//! ```
//! use cvr::convert::iter::SRGBLinearIterator;
//!
//! // `cvr` emphasizes supporting channel-major ordering of image data
//! // this is done for better interop with GPU-based code which would expect planar data
//! //
//! let r = [1u8, 2, 3];
//! let g = [4u8, 5, 6];
//! let b = [7u8, 8, 9];
//!
//! cvr::rgb::Iter::new(&r, &g, &b)
//!     .srgb_to_linear()
//!     .enumerate()
//!     .for_each(|(idx, [r, g, b])| {
//!         // can now use the (r, g, b) values for pixel `idx`
//!     });
//!
//! // but `cvr` also aims to help support packed pixel formats wherever it can!
//! //
//! let pixels = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
//! pixels
//!     .iter()
//!     .copied()
//!     .srgb_to_linear()
//!     .enumerate()
//!     .for_each(|(idx, [r, g, b])| {
//!         // can now use the (r, g, b) values for pixel `idx`
//!     });
//! ```
//!
//! ---
//!
//! While most users would expect to be operating off the 8-bit values directly, working in
//! floating point has several attractive features. Namely, it enables your image processing
//! to retain accuracy and it keeps values consistent across different bit depths. For example,
//! while 0.5 always represents something half as bright as 1.0, 128 will not always be the
//! midpoint depending on the bit-depth of the image (8-bit vs 16-bit). Other operations like
//! white balancing are also simplified.
//!
//! It's worth noting that not _all_ 8-bit RGB values are `sRGB`. For example, certain cameras
//! enable you to capture images as raw sensor values which can be interpreted linearly without
//! loss of accuracy. Most cameras (including machine vision ones) do support `sRGB` though and
//! in some cases, it is the default setting to have `sRGB` encoding enabled.
//!

/// `srgb_to_linear` converts an `sRGB` gamma-corrected 8-bit pixel value into its corresponding
/// value in the linear `sRGB` color space as a `f32` mapped to the range `[0, 1]`.
///
/// This function is the inverse of `linear_to_srgb`.
///
/// Notes on the algorithm and the constants used can be found [here](https://en.wikipedia.org/wiki/SRGB).
///
/// # Example
/// ```
/// let r = [1u8, 2, 3];
/// let g = [4u8, 5, 6];
/// let b = [7u8, 8, 9];
///
/// let mut red_linear = [0f32; 3];
/// let mut green_linear = [0f32; 3];
/// let mut blue_linear = [0f32; 3];
///
/// for idx in 0..r.len() {
///     red_linear[idx] = cvr::convert::srgb_to_linear(r[idx]);
///     green_linear[idx] = cvr::convert::srgb_to_linear(g[idx]);
///     blue_linear[idx] = cvr::convert::srgb_to_linear(b[idx]);
/// }
///
/// assert_eq!(red_linear, [0.000303527, 0.000607054, 0.00091058103]);
/// assert_eq!(green_linear, [0.001214108, 0.001517635, 0.0018211621]);
/// assert_eq!(blue_linear, [0.002124689, 0.002428216, 0.002731743]);
/// ```
///
#[must_use]
pub fn srgb_to_linear(u: u8) -> f32 {
  // 1/ 255.0 => 0.00392156863
  //
  let u = f32::from(u) * 0.003_921_569;

  if u <= 0.04045 {
    // 1 / 12.92 => 0.0773993808
    //
    u * 0.077_399_38
  } else {
    // 1/ 1.055 => 0.947867299
    //
    ((u + 0.055) * 0.947_867_3).powf(2.4)
  }
}

/// `linear_to_srgb` takes a `f32` linear `sRGB` pixel value in the range `[0, 1]` and encodes it as
/// an 8-bit value in the gamma-corrected `sRGB` space.
///
/// Note: if the gamma-corrected value exceeds `1.0` then it is automatically clipped and `255` is
/// returned.
///
/// This function is the inverse of `srgb_to_linear`.
///
/// Notes on the algorithm and the constants used can be found [here](https://en.wikipedia.org/wiki/SRGB#Specification_of_the_transformation).
///
/// # Example
/// ```
/// let r = [0.000303527, 0.000607054, 0.00091058103];
/// let g = [0.001214108, 0.001517635, 0.0018211621];
/// let b = [0.002124689, 0.002428216, 0.002731743];
///
/// let mut red_srgb = [0u8; 3];
/// let mut green_srgb = [0u8; 3];
/// let mut blue_srgb = [0u8; 3];
///
/// for idx in 0..r.len() {
///     red_srgb[idx] = cvr::convert::linear_to_srgb(r[idx]);
///     green_srgb[idx] = cvr::convert::linear_to_srgb(g[idx]);
///     blue_srgb[idx] = cvr::convert::linear_to_srgb(b[idx]);
/// }
///
/// assert_eq!(red_srgb, [1u8, 2, 3]);
/// assert_eq!(green_srgb, [4u8, 5, 6]);
/// assert_eq!(blue_srgb, [7u8, 8, 9]);
/// ```
///
#[must_use]
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
pub fn linear_to_srgb(u: f32) -> u8 {
  let u = if u <= 0.003_130_8 {
    12.92 * u
  } else {
    // 1 / 2.4 => 0.416666667
    //
    1.055 * u.powf(0.416_666_66) - 0.055
  };

  if u >= 1.0 {
    return 255;
  }

  if u < 0.0 {
    return 0;
  }

  (255.0 * u).round() as u8
}

/// `linear_to_gray` takes the provided linearized `RGB` pixel value and converts it to its
/// corresponding [luminance in the XYZ color space](https://en.wikipedia.org/wiki/CIE_1931_color_space#Meaning_of_X,_Y_and_Z).
///
#[must_use]
#[allow(clippy::mistyped_literal_suffixes)]
pub fn linear_to_gray(rgb: [f32; 3]) -> f32 {
  0.212_639 * rgb[0] + 0.715_168_7 * rgb[1] + 0.072_192_32 * rgb[2]
}

/// `linear_to_hsv` takes the provided linearized `RGB` pixel values and converts them to their
/// representation in the `HSV` color space [using the equation provided here](https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB).
///
/// The returned array is in `(H, S, V)` ordering with `H` in the range `[0.0, 360.0]` and `S`, `V`
/// both within the range `[0.0, 1.0]`.
///
/// # Panics
///
/// Panics in debug builds if the supplied `[r, g, b]` values are not within the range `[0.0, 1.0]`.
///
/// # Safety
///
/// While not technically unsafe, `(R, G, B)` values are assumed to be in the range `[0.0, 1.0]`.
///
#[must_use]
#[allow(clippy::float_cmp, clippy::many_single_char_names)]
pub fn linear_to_hsv([r, g, b]: [f32; 3]) -> [f32; 3] {
  debug_assert!((0.0..=1.0).contains(&r));
  debug_assert!((0.0..=1.0).contains(&g));
  debug_assert!((0.0..=1.0).contains(&b));

  let x_max = r.max(g).max(b);
  let x_min = r.min(g).min(b);

  let c = x_max - x_min;

  let v = x_max;

  let h = if c == 0.0 {
    0.0
  } else if v == r {
    60.0 * (0.0 + (g - b) / c)
  } else if v == g {
    60.0 * (2.0 + (b - r) / c)
  } else if v == b {
    60.0 * (4.0 + (r - g) / c)
  } else {
    unsafe { std::hint::unreachable_unchecked() };
  };

  let s = if v == 0.0 { 0.0 } else { c / v };
  let h = if h < 0.0 { 360.0 + h } else { h };

  [h, s, v]
}

/// `hsv_to_linear` takes an `HSV` triple and converts it to its corresponding values in the linear
/// `RGB` color space.
///
/// The input hue must be in the range `[0.0, 360.0]` and the `S` and `V` values must be in the
/// range `[0.0, 1.0]`.
///
/// # Panics
///
/// Panics in debug builds if the supplied `[h, s, v]` values exceed their bounds, i.e. if `h` is
/// not within the range `[0.0, 360.0]` and `s` or `v` are outside the range `[0.0, 1.0]`.
///
/// # Safety
///
/// While not explicitly `unsafe`, this function has implicit contracts on the ranges of its inputs
/// and isn't guaranteed to be correct or `panic!` for values outside those ranges.
///
#[must_use]
#[allow(clippy::many_single_char_names, clippy::manual_range_contains)]
pub fn hsv_to_linear([h, s, v]: [f32; 3]) -> [f32; 3] {
  debug_assert!((0.0..=360.0).contains(&h));
  debug_assert!((0.0..=1.0).contains(&s));
  debug_assert!((0.0..=1.0).contains(&v));

  let c = s * v;

  let h = h / 60.0;
  let x = c * (1.0 - (h % 2.0 - 1.0).abs());

  let (r, g, b) = if c == 0.0 {
    (0.0, 0.0, 0.0)
  } else if h >= 0.0 && h <= 1.0 {
    (c, x, 0.0)
  } else if h > 1.0 && h <= 2.0 {
    (x, c, 0.0)
  } else if h > 2.0 && h <= 3.0 {
    (0.0, c, x)
  } else if h > 3.0 && h <= 4.0 {
    (0.0, x, c)
  } else if h > 4.0 && h <= 5.0 {
    (x, 0.0, c)
  } else if h > 5.0 && h <= 6.0 {
    (c, 0.0, x)
  } else {
    std::unreachable!();
  };

  let m = v - c;
  [r + m, g + m, b + m]
}

/// `iter` contains the set of conversion iterators that enable lazy color space conversions.
///
pub mod iter {
  use super::{hsv_to_linear, linear_to_gray, linear_to_hsv, linear_to_srgb, srgb_to_linear};

  /// `SRGBToLinear` lazily converts 8-bit `sRGB` pixels to their linear floating point
  /// counterparts.
  ///
  #[allow(clippy::type_complexity)]
  pub struct SRGBToLinear<Iter>
  where
    Iter: std::iter::Iterator<Item = [u8; 3]>,
  {
    iter: Iter,
  }

  impl<Iter> std::iter::Iterator for SRGBToLinear<Iter>
  where
    Iter: std::iter::Iterator<Item = [u8; 3]>,
  {
    type Item = [f32; 3];

    fn next(&mut self) -> Option<Self::Item> {
      self
        .iter
        .next()
        .map(|[r, g, b]| [srgb_to_linear(r), srgb_to_linear(g), srgb_to_linear(b)])
    }
  }

  /// `SRGBLinear` is the public trait `std::iter::Iterator` types implement to enable
  /// `.srgb_to_linear()` as an iterator adapter.
  ///
  pub trait SRGBLinearIterator: std::iter::Iterator<Item = [u8; 3]>
  where
    Self: Sized,
  {
    /// `srgb_to_linear` converts the current `Iterator` to a [`iter::SRGBToLinear`](crate::convert::iter::SRGBToLinear).
    ///
    fn srgb_to_linear(self) -> SRGBToLinear<Self> {
      SRGBToLinear { iter: self }
    }
  }

  impl<Iter> SRGBLinearIterator for Iter where Iter: std::iter::Iterator<Item = [u8; 3]> {}

  /// `LinearToSRGBIter` lazily converts linear floating point `(R, G, B)` data into its
  /// 8-bit `sRGB` representation.
  ///
  pub struct LinearToSRGB<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    iter: Iter,
  }

  impl<Iter> std::iter::Iterator for LinearToSRGB<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    type Item = [u8; 3];

    fn next(&mut self) -> Option<Self::Item> {
      self
        .iter
        .next()
        .map(|[r, g, b]| [linear_to_srgb(r), linear_to_srgb(g), linear_to_srgb(b)])
    }
  }

  /// `LinearToSRGB` is the public trait `std::iter::Iterator` types implement to enable
  /// `.linear_to_srgb()` as an iterator adapter.
  ///
  #[allow(clippy::type_complexity)]
  pub trait LinearSRGBIterator: std::iter::Iterator<Item = [f32; 3]>
  where
    Self: Sized,
  {
    /// `linear_to_srgb` converts the current `Iterator` to a [`iter::LinearToSRGB`](crate::convert::iter::LinearToSRGB).
    ///
    fn linear_to_srgb(self) -> LinearToSRGB<Self> {
      LinearToSRGB { iter: self }
    }
  }

  impl<Iter> LinearSRGBIterator for Iter where Iter: std::iter::Iterator<Item = [f32; 3]> {}

  /// `LinearToGray` lazily converts linearized `f32` pixel values to their corresponding
  /// [luminance in the CIE XYZ color space](https://en.wikipedia.org/wiki/CIE_1931_color_space#Meaning_of_X,_Y_and_Z).
  ///
  pub struct LinearToGray<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    iter: Iter,
  }

  impl<Iter> std::iter::Iterator for LinearToGray<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    type Item = f32;

    fn next(&mut self) -> Option<Self::Item> {
      self.iter.next().map(linear_to_gray)
    }
  }

  /// `LinearGrayIterator` is the public trait implemented for all `Iterator` types that enables
  /// the adapter `linear_to_gray()` to be invoked.
  ///
  pub trait LinearGrayIterator: std::iter::Iterator<Item = [f32; 3]>
  where
    Self: Sized,
  {
    /// `linear_to_gray` converts the current `Iterator` into a [`iter::LinearToGray`](crate::convert::iter::LinearToGray).
    ///
    fn linear_to_gray(self) -> LinearToGray<Self> {
      LinearToGray { iter: self }
    }
  }

  impl<Iter> LinearGrayIterator for Iter where Iter: std::iter::Iterator<Item = [f32; 3]> {}

  /// `LinearToHSV` lazily converts linearized `f32` pixel values to their corresponding
  /// [HSV values](https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB).
  ///
  pub struct LinearToHSV<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    iter: Iter,
  }

  impl<Iter> std::iter::Iterator for LinearToHSV<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    type Item = [f32; 3];

    fn next(&mut self) -> Option<Self::Item> {
      self.iter.next().map(linear_to_hsv)
    }
  }

  /// `LinearHSVIterator` is the public trait implemented for all `Iterator` types that enables
  /// the adapter `linear_to_hsv()` to be invoked.
  ///
  pub trait LinearHSVIterator: std::iter::Iterator<Item = [f32; 3]>
  where
    Self: Sized,
  {
    /// `linear_to_hsv` transforms the current `Iterator` into a [`iter::LinearToHSV`](crate::convert::iter::LinearToHSV).
    ///
    fn linear_to_hsv(self) -> LinearToHSV<Self> {
      LinearToHSV { iter: self }
    }
  }

  impl<Iter> LinearHSVIterator for Iter where Iter: std::iter::Iterator<Item = [f32; 3]> {}

  /// `HSVToLinear` lazily converts linearized `f32` pixel values to their corresponding
  /// [RGB values](https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB).
  ///
  pub struct HSVToLinear<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    iter: Iter,
  }

  impl<Iter> std::iter::Iterator for HSVToLinear<Iter>
  where
    Iter: std::iter::Iterator<Item = [f32; 3]>,
  {
    type Item = [f32; 3];

    fn next(&mut self) -> Option<Self::Item> {
      self.iter.next().map(hsv_to_linear)
    }
  }

  /// `HSVLinearIterator` is the public trait implemented for all `Iterator` types that enables
  /// the adapter `hsv_to_linear()` to be invoked.
  ///
  pub trait HSVLinearIterator: std::iter::Iterator<Item = [f32; 3]>
  where
    Self: Sized,
  {
    /// `hsv_to_linear` converts the current `Iterator` to a [`iter::HSVToLinear`](crate::convert::iter::HSVToLinear).
    ///
    fn hsv_to_linear(self) -> HSVToLinear<Self> {
      HSVToLinear { iter: self }
    }
  }

  impl<Iter> HSVLinearIterator for Iter where Iter: std::iter::Iterator<Item = [f32; 3]> {}
} // iter