# cv-convert
Type conversions among famous Rust computer vision libraries. It supports the following crates:
- [image](https://crates.io/crates/image)
- [nalgebra](https://crates.io/crates/nalgebra)
- [opencv](https://crates.io/crates/opencv)
- [tch](https://crates.io/crates/tch)
## Import to Your Crate
Add cv-convert to `Cargo.toml` to import most conversions by default.
```toml
[dependencies.cv-convert]
version = "0.1"
```
You can manually choose supported libraries to avoid bloating.
```toml
version = "0.1"
default-features = false
features = ["opencv-4", "opencv-buildtime-bindgen", "nalgebra"]
```
## Supported Cargo Features
opencv crate features
- `opencv-4`: Enable `opencv-4` in opencv crate.
- `opencv-34`: Enable `opencv-34` in opencv crate.
- `opencv-32`: Enable `opencv-32` in opencv crate.
- `opencv-buildtime-bindgen`: Enable `buildtime-bindgen` in opencv crate.
image crate feature
- `image`
nalgebra crate feature
- `nalgebra`
tch crate feature
- `tch`
## Usage
The crate provides `FromCv`, `TryFromCv`, `IntoCv`, `TryIntoCv` traits, which are similar to standard library's `From` and `Into`.
```rust
use cv_convert::{FromCv, IntoCv, TryFromCv, TryIntoCv};
use nalgebra as na;
use opencv as cv;
// FromCv
let cv_point = cv::core::Point2d::new(1.0, 3.0);
let na_points = na::Point2::<f64>::from_cv(&cv_point);
// IntoCv
let cv_point = cv::core::Point2d::new(1.0, 3.0);
let na_points: na::Point2<f64> = cv_point.into_cv();
// TryFromCv
let na_mat = na::DMatrix::from_vec(2, 3, vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
let cv_mat = cv::core::Mat::try_from_cv(&na_mat)?;
// TryIntoCv
let na_mat = na::DMatrix::from_vec(2, 3, vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
let cv_mat: cv::core::Mat = na_mat.try_into_cv()?;
```
## License
MIT license. See [LICENSE](LICENSE.txt) file.