1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use ::alloc::{alloc, vec};
use core::{cell, cmp, ops, ptr};

/// A collection onto which new values can be appended, while still keeping references to previous
/// values valid.
///
/// # Example
///
/// This is useful as a buffer on the side of another data structure that is built incrementally.
/// For example, let's imagine we want to parse a JSON-like data format that contains only arrays
/// and strings.
///
/// The advantage of having slices and `str`s instead of `Vec`s and `String`s is that you'd then be
/// to directly pattern match against values of this type.
///
/// ```
/// # use cursed_collections::AppendOnlyVec;
/// enum MyData<'buffers> {
///     Array(&'buffers [MyData<'buffers>]),
///     String(&'buffers str),
/// }
///
/// let string_buf = AppendOnlyVec::<String>::new();
/// let array_buf = AppendOnlyVec::<Vec<MyData>>::new();
///
/// let my_key = MyData::String(string_buf.push("name".into()));
/// let my_name = MyData::String(string_buf.push("Simon".into()));
/// let my_array = MyData::Array(array_buf.push(vec![my_key, my_name]));
///
/// match my_array {
///     MyData::Array(&[MyData::String("name"), MyData::String(name)]) => {
///         println!("Hello, {}", name)
///     }
///     _ => println!("Hello!"),
/// }
/// ```
pub struct AppendOnlyVec<T> {
    segments: cell::UnsafeCell<vec::Vec<*mut T>>,
    tail: cell::UnsafeCell<*mut T>,
    tail_size: cell::Cell<usize>,
    layout: alloc::Layout,
}

const SEGMENT_CAPACITY_LOG_2: usize = 5;
const SEGMENT_CAPACITY: usize = 1 << SEGMENT_CAPACITY_LOG_2;
const SEGMENT_CAPACITY_MASK: usize = SEGMENT_CAPACITY - 1;

impl<T> AppendOnlyVec<T> {
    /// Creates an empty `AppendOnlyVec`.
    pub fn new() -> AppendOnlyVec<T> {
        AppendOnlyVec {
            segments: cell::UnsafeCell::new(vec![]),
            tail: cell::UnsafeCell::new(ptr::null_mut()),
            tail_size: cell::Cell::new(0),
            layout: alloc::Layout::new::<[T; SEGMENT_CAPACITY]>(),
        }
    }

    /// Consumes a `T`, appends it to the end of the vector, and returns a reference to the newly
    /// appended element.
    pub fn push(&self, value: T) -> &T {
        unsafe {
            let tail = self.tail.get();
            if (*tail).is_null() {
                ptr::write(tail, alloc::alloc(self.layout) as *mut T)
            }

            let tail_size = self.tail_size.get();
            let dst = (*tail).add(tail_size);
            ptr::write(dst, value);

            let next_tail_size = tail_size + 1;
            self.tail_size.set(if next_tail_size == SEGMENT_CAPACITY {
                let tail = ptr::replace(tail, ptr::null_mut());
                (*self.segments.get()).push(tail);
                0
            } else {
                next_tail_size
            });

            &*dst
        }
    }

    /// Returns the number of elements in the vector.
    pub fn len(&self) -> usize {
        unsafe { (*self.segments.get()).len() * SEGMENT_CAPACITY + self.tail_size.get() }
    }

    pub fn is_empty(&self) -> bool {
        unsafe { self.tail_size.get() == 0 && (*self.segments.get()).is_empty() }
    }
}

impl<T> Drop for AppendOnlyVec<T> {
    fn drop(&mut self) {
        unsafe {
            let tail = *self.tail.get();
            if !tail.is_null() {
                for i in 0..self.tail_size.get() {
                    ptr::drop_in_place(tail.add(i))
                }
                alloc::dealloc(tail as _, self.layout);
            }
            for segment in (*self.segments.get()).drain(..) {
                for i in 0..SEGMENT_CAPACITY {
                    ptr::drop_in_place(segment.add(i));
                }
                alloc::dealloc(segment as _, self.layout);
            }
        }
    }
}

impl<T> Default for AppendOnlyVec<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> ops::Index<usize> for AppendOnlyVec<T> {
    type Output = T;

    fn index(&self, index: usize) -> &Self::Output {
        unsafe {
            let segment_offset = index & SEGMENT_CAPACITY_MASK;
            let segment_index = (index & !SEGMENT_CAPACITY_MASK) >> SEGMENT_CAPACITY_LOG_2;

            match segment_index.cmp(&(*self.segments.get()).len()) {
                cmp::Ordering::Less => {
                    let segment = *(*self.segments.get()).get_unchecked(segment_index);
                    &*segment.add(segment_offset)
                }
                cmp::Ordering::Equal if segment_offset < self.tail_size.get() => {
                    &*(*self.tail.get()).add(segment_offset)
                }
                _ => panic!("out of bounds, buddy"),
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{AppendOnlyVec, SEGMENT_CAPACITY};
    use quickcheck_macros::quickcheck;
    use std::ptr;

    #[test]
    fn it_works() {
        let vec = AppendOnlyVec::<String>::new();
        let s1 = vec.push("hello".into());
        let s2 = vec.push("bye".into());
        assert_eq!(&String::from("hello"), s1);
        assert_eq!(&String::from("bye"), s2);
    }

    #[test]
    fn references_still_valid_after_another_segment_is_created() {
        let vec = AppendOnlyVec::<String>::new();
        let mut references = Vec::<&String>::new();
        for i in 0..(SEGMENT_CAPACITY + 1) {
            references.push(vec.push(format!("{}", i)));
        }

        assert_eq!(&"0", &references[0]);
        assert!(ptr::eq(&vec[0], references[0]));
        assert_eq!(
            format!("{}", SEGMENT_CAPACITY).as_str(),
            references[SEGMENT_CAPACITY].as_str()
        );
    }

    #[test]
    fn index() {
        let vec = AppendOnlyVec::<String>::new();
        vec.push("hello".into());
        vec.push("bye".into());

        assert_eq!(vec[0], "hello");
        assert_eq!(vec[1], "bye");
    }

    #[test]
    #[should_panic]
    fn index_out_of_bounds() {
        let vec = AppendOnlyVec::<String>::new();
        vec.push("hello".into());
        vec.push("bye".into());
        let _ = &vec[2];
    }

    #[test]
    fn len_empty() {
        let vec = AppendOnlyVec::<String>::new();
        assert_eq!(0, vec.len())
    }

    #[test]
    fn len_1() {
        let vec = AppendOnlyVec::<String>::new();
        vec.push("hello".into());
        assert_eq!(1, vec.len())
    }

    #[test]
    fn len_multiple_segments() {
        let vec = AppendOnlyVec::<String>::new();
        for i in 0..(SEGMENT_CAPACITY + 1) {
            vec.push(format!("{}", i));
        }
        assert_eq!(33, vec.len())
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn is_same_as_vector_once_fully_initialized(expected: Vec<String>) -> bool {
        let actual = AppendOnlyVec::new();
        for value in &expected {
            actual.push(value.clone());
        }
        (0..expected.len()).all(|i| actual[i] == expected[i])
    }
}