cubecl_runtime/
features.rs

1use alloc::collections::{BTreeMap, BTreeSet};
2
3use cubecl_ir::{SemanticType, StorageType, Type};
4use enumset::EnumSetType;
5
6pub use enumset::EnumSet;
7
8/// Features supported by a runtime
9#[derive(Debug, Clone, PartialEq, Eq, Default)]
10pub struct Features {
11    /// Plane features supported by this runtime.
12    pub plane: EnumSet<Plane>,
13    /// Clustered launches and intra-cluster operations like cluster shared memory
14    pub cube_cluster: bool,
15    /// Enables to change the line size of containers during kernel execution.
16    pub dynamic_line_size: bool,
17    /// Enables explicit alignment. If false, alignment still compiles, but isn't actually applied.
18    pub alignment: bool,
19
20    /// Types supported by this runtime, and which usages they support.
21    pub storage_types: BTreeMap<StorageType, EnumSet<TypeUsage>>,
22    /// Semantic constructs supported by this runtime.
23    pub semantic_types: BTreeSet<SemanticType>,
24
25    /// Whether `copy_async` is supported
26    pub copy_async: bool,
27    /// Tensor Memory Accelerator supported features
28    pub tma: EnumSet<Tma>,
29    /// The cmma feature enables cooperative matrix-multiply and accumulate operations.
30    pub cmma: BTreeSet<MmaConfig>,
31    /// The manual MMA feature enables cooperative matrix-multiply with manually managed data
32    /// movement
33    pub mma: BTreeSet<MmaConfig>,
34    /// Scaled MMA allows combining matrix multiplication with unscaling quantized values into a single
35    /// instruction. Scales must fit a specific layout and block size.
36    pub scaled_mma: BTreeSet<ScaledMmaConfig>,
37    /// Types supported for ldmatrix, if any
38    pub ldmatrix: BTreeSet<StorageType>,
39    /// Types supported by stmatrix, if any
40    pub stmatrix: BTreeSet<StorageType>,
41}
42
43/// Operations allowed for this type. CMMA is defined separately.
44#[derive(Debug, Hash, PartialOrd, Ord, EnumSetType)]
45pub enum TypeUsage {
46    /// Conversion to/from the type. All types should support this.
47    Conversion,
48    /// All math/logic instructions except dot product
49    Arithmetic,
50    /// Dot product, mainly for BF16 on Intel
51    DotProduct,
52    /// Whether this type can be stored in a buffer
53    Buffer,
54    /// Atomic loads and stores
55    AtomicLoadStore,
56    /// Atomic add/sub
57    AtomicAdd,
58    /// Atomic min/max
59    AtomicMinMax,
60}
61
62/// Supported plane features
63#[derive(Debug, Hash, PartialOrd, Ord, EnumSetType)]
64pub enum Plane {
65    /// Basic plane-wide operations
66    Ops,
67    /// Plane-wide sync
68    Sync,
69}
70
71/// Shape and element types of a valid MMA configuration
72#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
73pub struct MmaConfig {
74    /// Element of the A matrix
75    pub a_type: StorageType,
76    /// Element of the B matrix
77    pub b_type: StorageType,
78    /// Element of the C/D matrices
79    pub cd_type: StorageType,
80    /// The size of the matrix on the `m` dimension
81    pub m: u32,
82    /// The size of the matrix on the `n` dimension
83    pub n: u32,
84    /// The size of the matrix on the `k` dimension
85    pub k: u32,
86}
87
88/// Shape and element types of a valid block-scaled MMA configuration
89#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
90pub struct ScaledMmaConfig {
91    /// Element of the A matrix
92    pub a_type: StorageType,
93    /// Element of the B matrix
94    pub b_type: StorageType,
95    /// Element of the C/D matrices
96    pub cd_type: StorageType,
97    /// Element of the blocks scales
98    pub scales_type: StorageType,
99    /// The size of the matrix on the `m` dimension
100    pub m: u32,
101    /// The size of the matrix on the `n` dimension
102    pub n: u32,
103    /// The size of the matrix on the `k` dimension
104    pub k: u32,
105    /// Number of scales per tile row/col.
106    /// A scale factor of 2 means `m x 2` scales for A and `2 x n` for B (in CUDA)
107    /// Scales blocks must be organized along the natural `line_layout` of the operation
108    pub scales_factor: u32,
109}
110
111/// Atomic features that may be supported by a [cube runtime](Runtime).
112#[derive(Debug, PartialOrd, Ord, EnumSetType)]
113pub enum Tma {
114    /// Base feature set for tensor memory accelerator features. Includes tiling and im2col
115    Base,
116    /// im2colWide encoding for tensor map.
117    Im2colWide,
118    /// Different atomicities for 128-byte swizzle, i.e. 128-byte with 32-byte atomicity.
119    SwizzleAtomicity,
120}
121
122impl Features {
123    /// Get the usages for a type
124    pub fn type_usage(&self, ty: StorageType) -> EnumSet<TypeUsage> {
125        self.storage_types
126            .get(&ty)
127            .cloned()
128            .unwrap_or_else(EnumSet::empty)
129    }
130
131    /// Whether the type is supported in any way
132    pub fn supports_type(&self, ty: impl Into<Type>) -> bool {
133        match ty.into() {
134            Type::Scalar(storage_type) | Type::Line(storage_type, _) => {
135                self.storage_types.contains_key(&storage_type)
136            }
137            Type::Semantic(semantic_type) => self.semantic_types.contains(&semantic_type),
138        }
139    }
140}
141
142impl TypeUsage {
143    /// All uses except atomics
144    pub fn all_scalar() -> EnumSet<TypeUsage> {
145        TypeUsage::Conversion | TypeUsage::Arithmetic | TypeUsage::DotProduct | TypeUsage::Buffer
146    }
147
148    /// All atomic uses
149    pub fn all_atomic() -> EnumSet<TypeUsage> {
150        TypeUsage::AtomicAdd | TypeUsage::AtomicLoadStore | TypeUsage::AtomicMinMax
151    }
152}