1use crate::{
2 WmmaCompiler,
3 compute::{CudaServer, context::CudaContext},
4 device::CudaDevice,
5};
6use cubecl_common::{
7 device::{Device, DeviceState},
8 profile::TimingMethod,
9};
10use cubecl_core::{
11 MemoryConfiguration, Runtime,
12 ir::{
13 BarrierLevel, ContiguousElements, DeviceProperties, ElemType, FloatKind,
14 HardwareProperties, LineSize, MatrixLayout, MemoryDeviceProperties, MmaProperties,
15 OpaqueType, SemanticType, StorageType, TargetProperties,
16 features::{Plane, Tma, TypeUsage},
17 },
18 server::ServerUtilities,
19};
20use cubecl_cpp::{
21 DialectWmmaCompiler,
22 cuda::{CudaDialect, arch::CudaArchitecture, mma::contiguous_elements_cuda},
23 register_supported_types,
24 shared::{
25 CompilationOptions, CppCompiler, CppSupportedFeatures, register_mma_features,
26 register_scaled_mma_features, register_wmma_features,
27 },
28};
29use cubecl_runtime::{client::ComputeClient, logging::ServerLogger};
30use cubecl_zspace::striding::has_pitched_row_major_strides;
31use cudarc::driver::sys::{CUDA_VERSION, cuDeviceTotalMem_v2};
32use std::{mem::MaybeUninit, sync::Arc};
33
34#[derive(Default)]
36pub struct RuntimeOptions {
37 pub memory_config: MemoryConfiguration,
39}
40
41#[derive(Debug)]
42pub struct CudaRuntime;
43
44impl DeviceState for CudaServer {
45 fn init(device_id: cubecl_common::device::DeviceId) -> Self {
46 let options = RuntimeOptions::default();
47 let device = CudaDevice::from_id(device_id);
48
49 cudarc::driver::result::init().unwrap();
51 let device_id = device.index as i32;
52 let device_ptr = cudarc::driver::result::device::get(device_id).unwrap();
53 let arch_major;
54 let arch_version = unsafe {
55 arch_major = cudarc::driver::result::device::get_attribute(
56 device_ptr,
57 cudarc::driver::sys::CUdevice_attribute::CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR,
58 )
59 .unwrap();
60 let minor = cudarc::driver::result::device::get_attribute(
61 device_ptr,
62 cudarc::driver::sys::CUdevice_attribute::CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR,
63 )
64 .unwrap();
65 arch_major * 10 + minor
66 } as u32;
67
68 let mem_alignment = 512;
72
73 let arch = CudaArchitecture {
75 version: arch_version,
76 };
77 let supported_wmma_combinations = WmmaCompiler::supported_wmma_combinations(&arch);
78 let supported_mma_combinations = WmmaCompiler::supported_mma_combinations(&arch);
79 let supported_scaled_mma_combinations =
80 WmmaCompiler::supported_scaled_mma_combinations(&arch);
81
82 let ctx = unsafe {
83 let ctx = cudarc::driver::result::primary_ctx::retain(device_ptr).unwrap();
84 cudarc::driver::result::ctx::set_current(ctx).unwrap();
85 ctx
86 };
87
88 let max_memory = unsafe {
89 let mut bytes = MaybeUninit::uninit();
90 cuDeviceTotalMem_v2(bytes.as_mut_ptr(), device_ptr);
91 bytes.assume_init() as u64
92 };
93 let mem_properties = MemoryDeviceProperties {
94 max_page_size: max_memory / 4,
95 alignment: mem_alignment as u64,
96 };
97
98 let mut comp_opts = CompilationOptions {
99 supports_features: CppSupportedFeatures {
100 fast_math: true,
101 ..Default::default()
102 },
103 ..Default::default()
104 };
105
106 let hardware_props = unsafe {
107 use cudarc::driver::{result::device::get_attribute, sys::CUdevice_attribute::*};
108 let warp_size =
109 get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_WARP_SIZE).unwrap() as u32;
110 let max_shared = get_attribute(
111 device_ptr,
112 CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
113 )
114 .unwrap() as usize;
115 let max_threads = get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK)
116 .unwrap() as u32;
117 let block_dim_x =
118 get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X).unwrap();
119 let block_dim_y =
120 get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y).unwrap();
121 let block_dim_z =
122 get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z).unwrap();
123 let max_cube_dim = (block_dim_x as u32, block_dim_y as u32, block_dim_z as u32);
124
125 let grid_dim_x = get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X).unwrap();
126 let grid_dim_y = get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y).unwrap();
127 let grid_dim_z = get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z).unwrap();
128 let max_cube_count = (grid_dim_x as u32, grid_dim_y as u32, grid_dim_z as u32);
129
130 let num_streaming_multiprocessors = Some(
131 get_attribute(device_ptr, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT).unwrap() as u32,
132 );
133 let num_tensor_cores = tensor_cores_per_sm(arch_version);
134
135 comp_opts.warp_size = warp_size;
136
137 HardwareProperties {
138 load_width: 128,
139 plane_size_min: warp_size,
140 plane_size_max: warp_size,
141 max_bindings: crate::device::CUDA_MAX_BINDINGS,
142 max_shared_memory_size: max_shared,
143 max_cube_count,
144 max_units_per_cube: max_threads,
145 max_cube_dim,
146 num_streaming_multiprocessors,
147 num_tensor_cores,
148 min_tensor_cores_dim: if supported_wmma_combinations.is_empty() {
149 None
150 } else {
151 Some(8)
152 },
153 num_cpu_cores: None,
154 }
155 };
156
157 let mut device_props = DeviceProperties::new(
158 Default::default(),
159 mem_properties.clone(),
160 hardware_props,
161 TimingMethod::System,
162 );
163 register_supported_types(&mut device_props);
164 device_props.register_type_usage(ElemType::Float(FloatKind::TF32), TypeUsage::Conversion);
165 if arch_version >= 60 {
166 device_props.register_type_usage(
167 StorageType::Atomic(ElemType::Float(FloatKind::F64)),
168 TypeUsage::AtomicAdd | TypeUsage::AtomicLoadStore,
169 );
170 }
171 if arch_version >= 70 {
172 device_props.register_type_usage(
173 StorageType::Atomic(ElemType::Float(FloatKind::F16)),
174 TypeUsage::AtomicAdd | TypeUsage::AtomicLoadStore,
175 );
176 device_props.register_semantic_type(SemanticType::Pipeline);
177 device_props
178 .register_type_usage(OpaqueType::Barrier(BarrierLevel::Unit), TypeUsage::Buffer);
179 device_props
180 .register_type_usage(OpaqueType::Barrier(BarrierLevel::Cube), TypeUsage::Buffer);
181 device_props.features.plane.insert(Plane::Sync);
182 comp_opts.supports_features.grid_constants = true;
183 }
184
185 if arch_version >= 75 {
186 device_props
187 .features
188 .ldmatrix
189 .insert(ElemType::Float(FloatKind::F16).into());
190 device_props
191 .features
192 .ldmatrix
193 .insert(ElemType::Float(FloatKind::BF16).into());
194 comp_opts.supports_features.fast_tanh = CUDA_VERSION >= 12080;
195 }
196
197 if arch_version >= 80 {
198 device_props.features.copy_async = true;
199 }
200
201 if arch_version >= 89 {
207 device_props.register_type_usage(
208 ElemType::Float(FloatKind::E4M3),
209 TypeUsage::Conversion | TypeUsage::Buffer,
210 );
211 device_props.register_type_usage(
212 ElemType::Float(FloatKind::E5M2),
213 TypeUsage::Conversion | TypeUsage::Buffer,
214 );
215 }
216 if arch_version >= 90 {
217 device_props.features.tma.insert(Tma::Base);
218 device_props.register_semantic_type(SemanticType::TensorMap);
219 device_props.features.cube_cluster = true;
220 comp_opts.supports_features.clusters = true;
221 comp_opts.supports_features.elect_sync = true;
222 device_props
223 .features
224 .stmatrix
225 .insert(ElemType::Float(FloatKind::F16).into());
226 device_props
227 .features
228 .stmatrix
229 .insert(ElemType::Float(FloatKind::BF16).into());
230 }
231
232 if arch_version >= 100 {
233 device_props.features.tma.insert(Tma::Im2colWide);
234 }
239
240 if arch_major == 10 || arch_major == 11 || arch_major == 12 {
244 device_props
245 .register_type_usage(ElemType::Float(FloatKind::E2M1), TypeUsage::Conversion);
246 device_props.register_type_usage(
247 StorageType::Packed(ElemType::Float(FloatKind::E2M1), 2),
248 TypeUsage::Conversion | TypeUsage::Buffer,
249 );
250 device_props.register_type_usage(
251 ElemType::Float(FloatKind::E2M3),
252 TypeUsage::Conversion | TypeUsage::Buffer,
253 );
254 device_props.register_type_usage(
255 ElemType::Float(FloatKind::E3M2),
256 TypeUsage::Conversion | TypeUsage::Buffer,
257 );
258 device_props.register_type_usage(
259 ElemType::Float(FloatKind::UE8M0),
260 TypeUsage::Conversion | TypeUsage::Buffer,
261 );
262
263 if CUDA_VERSION >= 12080 {
264 device_props.features.tma.insert(Tma::SwizzleAtomicity);
265 }
266 }
267
268 device_props.features.dynamic_line_size = true;
269 device_props.features.alignment = true;
270 device_props.features.plane.insert(Plane::Ops);
271 device_props
272 .features
273 .plane
274 .insert(Plane::NonUniformControlFlow);
275
276 register_wmma_features(supported_wmma_combinations, &mut device_props);
277 register_mma_features(supported_mma_combinations, &mut device_props);
278 register_scaled_mma_features(supported_scaled_mma_combinations, &mut device_props);
279
280 let cuda_ctx = CudaContext::new(comp_opts, ctx, arch);
281 let logger = Arc::new(ServerLogger::default());
282 let utilities = ServerUtilities::new(device_props, logger, ());
283
284 CudaServer::new(
285 cuda_ctx,
286 mem_properties,
287 options.memory_config,
288 mem_alignment,
289 device_id,
290 utilities,
291 )
292 }
293}
294
295pub type CudaCompiler = CppCompiler<CudaDialect<WmmaCompiler>>;
296
297fn tensor_cores_per_sm(version: u32) -> Option<u32> {
298 match version {
299 70 | 75 => Some(8), 80 | 86 | 89 | 90 | 91 | 92 | 100 => Some(4), _ => None, }
303}
304
305impl Runtime for CudaRuntime {
306 type Compiler = CudaCompiler;
307 type Server = CudaServer;
308 type Device = CudaDevice;
309
310 fn client(device: &Self::Device) -> ComputeClient<Self> {
311 ComputeClient::load(device)
312 }
313
314 fn name(_client: &ComputeClient<Self>) -> &'static str {
315 "cuda"
316 }
317
318 fn require_array_lengths() -> bool {
319 true
320 }
321
322 fn supported_line_sizes() -> &'static [LineSize] {
323 &[16, 8, 4, 2, 1]
324 }
325
326 fn max_cube_count() -> (u32, u32, u32) {
327 (i32::MAX as u32, u16::MAX as u32, u16::MAX as u32)
328 }
329
330 fn can_read_tensor(shape: &[usize], strides: &[usize]) -> bool {
331 has_pitched_row_major_strides(shape, strides)
332 }
333
334 fn target_properties() -> TargetProperties {
335 TargetProperties {
336 mma: MmaProperties {
337 register_size_bits: 32,
338 const_plane_size: 32,
339 register_layout_a: MatrixLayout::RowMajor,
340 register_layout_b: MatrixLayout::ColMajor,
341 register_layout_acc: MatrixLayout::RowMajor,
342 register_duplication_a: 1,
343 register_duplication_b: 1,
344 register_duplication_acc: 1,
345 contiguous_elements: ContiguousElements::new(contiguous_elements_cuda),
346 },
347 }
348 }
349}