cubecl_convolution/components/
selection.rs1use cubecl_core::{Runtime, client::ComputeClient};
2use cubecl_matmul::components::stage::PartitionBuffering;
3
4use cubecl_matmul::components::{
5 MatmulAvailabilityError, MatmulElems, MatmulSelection, TilingScheme, adjust_dtypes,
6};
7use cubecl_matmul::{
8 components::tile::TileMatmulFamily,
9 kernels::layered::{NUM_SM_APPROX, NUM_TENSOR_CORES_APPROX, find_instruction_size},
10};
11
12use crate::components::ConvolutionProblem;
13
14pub(crate) fn find_stage_size_m_n(
20 m: usize,
21 n: usize,
22 num_sm: usize,
23 max_tensor_cores: usize,
24 instruction_m: usize,
25 instruction_n: usize,
26 stage_size_k: usize,
27) -> (usize, usize) {
28 let max_tiles_elems_m = 256 / instruction_m;
29 let max_tiles_elems_n = 256 / instruction_n;
30 let max_tiles_total_stage = 16 / stage_size_k;
31
32 let mut dim_num_tiles_m = max_tensor_cores
33 .min(max_tiles_elems_m)
34 .min(max_tiles_total_stage);
35
36 let mut dim_num_tiles_n = max_tensor_cores
37 .min(max_tiles_elems_n)
38 .min(max_tiles_total_stage);
39
40 let total_tiles_m = m.div_ceil(instruction_m);
41 let total_tiles_n = n.div_ceil(instruction_n);
42
43 while total_tiles_n < dim_num_tiles_n && dim_num_tiles_n > 1 {
44 dim_num_tiles_n /= 2;
45 }
46
47 let total_tiles = total_tiles_m * total_tiles_n;
48
49 let mut stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
50 let mut num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
51
52 let mut previous_dim_num_tiles = dim_num_tiles_m;
54 let mut previous_num_cubes = num_cubes_expected;
55
56 while num_cubes_expected < num_sm && dim_num_tiles_m > 1 {
58 previous_dim_num_tiles = dim_num_tiles_m;
59 previous_num_cubes = num_cubes_expected;
60
61 dim_num_tiles_m = dim_num_tiles_m.div_ceil(2);
63 stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
64
65 num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
67 }
68
69 if (previous_num_cubes as isize - num_sm as isize).abs()
71 <= (num_cubes_expected as isize - num_sm as isize).abs()
72 {
73 (previous_dim_num_tiles, dim_num_tiles_n)
74 } else {
75 (dim_num_tiles_n, dim_num_tiles_m)
76 }
77}
78
79pub fn convolution_matmul_selection<TMM: TileMatmulFamily, R: Runtime>(
80 client: &ComputeClient<R>,
81 problem: &ConvolutionProblem,
82 plane_dim: u32,
83 dtypes: &mut MatmulElems,
84) -> Result<MatmulSelection, MatmulAvailabilityError> {
85 adjust_dtypes(client, dtypes, TMM::requires_accelerator());
86
87 let stage_k = if problem.k >= 4096 { 4 } else { 2 };
90
91 let tile_size = find_instruction_size::<R, TMM>(client, dtypes, problem.m, problem.n)?;
92
93 let hardware = &client.properties().hardware;
94 let num_sm = hardware
95 .num_streaming_multiprocessors
96 .unwrap_or(NUM_TENSOR_CORES_APPROX);
97 let max_tensor_cores = hardware.num_tensor_cores.unwrap_or(NUM_SM_APPROX);
98
99 let (stage_size_m, stage_size_n) = find_stage_size_m_n(
100 problem.m,
101 problem.n,
102 num_sm as usize,
103 max_tensor_cores as usize,
104 tile_size.m() as usize,
105 tile_size.n() as usize,
106 stage_k as usize,
107 );
108
109 let tiling_scheme = TilingScheme::builder()
110 .with_stage_size((stage_size_m as u32, 1, 1).into())
111 .with_tile_size(tile_size)
112 .with_partition_size((1, stage_size_n as u32, stage_k).into())
113 .build()
114 .unwrap();
115
116 Ok(MatmulSelection::builder(tiling_scheme, plane_dim)
117 .partition_buffering(PartitionBuffering::Single)
118 .build())
119}