1use bincode::de::Decoder;
2use bincode::enc::Encoder;
3use bincode::error::{DecodeError, EncodeError};
4use bincode::{Decode, Encode};
5use cu29::clock::RobotClock;
6use cu29::config::ComponentConfig;
7use cu29::cutask::{CuMsg, CuSrcTask, Freezable};
8use cu29::{output_msg, CuResult};
9#[cfg(hardware)]
10use embedded_hal::i2c::I2c;
11#[cfg(hardware)]
12use linux_embedded_hal::{I2CError, I2cdev};
13use std::fmt::Display;
14use uom::si::acceleration::{meter_per_second_squared, standard_gravity};
15use uom::si::angle::{degree, radian};
16use uom::si::angular_velocity::{degree_per_second, radian_per_second};
17use uom::si::f32::Acceleration;
18use uom::si::f32::Angle;
19use uom::si::f32::AngularVelocity;
20use uom::si::f32::MagneticFluxDensity;
21use uom::si::magnetic_flux_density::{nanotesla, tesla};
22
23const I2C_BUS: &str = "/dev/i2c-9";
25#[allow(unused)]
26const WT901_I2C_ADDRESS: u8 = 0x50;
27
28#[allow(unused)]
29#[repr(u8)]
30#[derive(Debug, Clone, Copy)]
31enum Registers {
32 AccX = 0x34,
34 AccY = 0x35,
35 AccZ = 0x36,
36
37 GyroX = 0x37,
39 GyroY = 0x38,
40 GyroZ = 0x39,
41
42 MagX = 0x3A,
44 MagY = 0x3B,
45 MagZ = 0x3C,
46
47 Roll = 0x3D,
49 Pitch = 0x3E,
50 Yaw = 0x3F,
51}
52
53impl Registers {
54 #[allow(dead_code)]
55 fn offset(&self) -> usize {
56 ((*self as u8 - Registers::AccX as u8) * 2) as usize
57 }
58}
59
60use cu29_log_derive::debug;
61use cu29_traits::CuError;
62use serde::de::{Deserialize, Deserializer};
63use serde::ser::{Serialize, SerializeStruct, Serializer};
64use uom::fmt::DisplayStyle::Abbreviation;
65
66pub struct WT901 {
67 #[cfg(hardware)]
68 i2c: Box<dyn I2c<Error = I2CError>>,
69}
70
71#[derive(Default, Clone, Debug)]
72pub struct PositionalReadingsPayload {
73 acc_x: Acceleration,
74 acc_y: Acceleration,
75 acc_z: Acceleration,
76 gyro_x: AngularVelocity,
77 gyro_y: AngularVelocity,
78 gyro_z: AngularVelocity,
79 mag_x: MagneticFluxDensity,
80 mag_y: MagneticFluxDensity,
81 mag_z: MagneticFluxDensity,
82 roll: Angle,
83 pitch: Angle,
84 yaw: Angle,
85}
86
87impl Display for PositionalReadingsPayload {
88 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
89 let acc_style = Acceleration::format_args(standard_gravity, Abbreviation);
90 let angv_style = AngularVelocity::format_args(degree_per_second, Abbreviation);
91 let mag_style = MagneticFluxDensity::format_args(nanotesla, Abbreviation);
92 let angle_style = Angle::format_args(degree, Abbreviation);
93
94 write!(
95 f,
96 "acc_x: {}, acc_y: {}, acc_z: {}\n gyro_x: {}, gyro_y: {}, gyro_z: {}\nmag_x: {}, mag_y: {}, mag_z: {}\nroll: {}, pitch: {}, yaw: {}",
97 acc_style.with(self.acc_x), acc_style.with(self.acc_y), acc_style.with(self.acc_z),
98 angv_style.with(self.gyro_x), angv_style.with(self.gyro_y), angv_style.with(self.gyro_z),
99 mag_style.with(self.mag_x), mag_style.with(self.mag_y), mag_style.with(self.mag_z),
100 angle_style.with(self.roll), angle_style.with(self.pitch), angle_style.with(self.yaw)
101 )
102 }
103}
104
105impl Serialize for PositionalReadingsPayload {
106 fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
107 let mut s = serializer.serialize_struct("PositionalReadings", 12)?;
108 s.serialize_field("acc_x", &self.acc_x.value)?;
109 s.serialize_field("acc_y", &self.acc_y.value)?;
110 s.serialize_field("acc_z", &self.acc_z.value)?;
111 s.serialize_field("gyro_x", &self.gyro_x.value)?;
112 s.serialize_field("gyro_y", &self.gyro_y.value)?;
113 s.serialize_field("gyro_z", &self.gyro_z.value)?;
114 s.serialize_field("mag_x", &self.mag_x.value)?;
115 s.serialize_field("mag_y", &self.mag_y.value)?;
116 s.serialize_field("mag_z", &self.mag_z.value)?;
117 s.serialize_field("roll", &self.roll.value)?;
118 s.serialize_field("pitch", &self.pitch.value)?;
119 s.serialize_field("yaw", &self.yaw.value)?;
120 s.end()
121 }
122}
123
124impl<'de> Deserialize<'de> for PositionalReadingsPayload {
125 fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
126 let values = <[f32; 12]>::deserialize(deserializer)?;
127 Ok(PositionalReadingsPayload {
128 acc_x: Acceleration::new::<standard_gravity>(values[0]),
129 acc_y: Acceleration::new::<standard_gravity>(values[1]),
130 acc_z: Acceleration::new::<standard_gravity>(values[2]),
131 gyro_x: AngularVelocity::new::<degree_per_second>(values[3]),
132 gyro_y: AngularVelocity::new::<degree_per_second>(values[4]),
133 gyro_z: AngularVelocity::new::<degree_per_second>(values[5]),
134 mag_x: MagneticFluxDensity::new::<nanotesla>(values[6]),
135 mag_y: MagneticFluxDensity::new::<nanotesla>(values[7]),
136 mag_z: MagneticFluxDensity::new::<nanotesla>(values[8]),
137 roll: Angle::new::<degree>(values[9]),
138 pitch: Angle::new::<degree>(values[10]),
139 yaw: Angle::new::<degree>(values[11]),
140 })
141 }
142}
143
144impl Encode for PositionalReadingsPayload {
145 fn encode<E: Encoder>(&self, encoder: &mut E) -> Result<(), EncodeError> {
146 self.acc_x.value.encode(encoder)?;
148 self.acc_y.value.encode(encoder)?;
149 self.acc_z.value.encode(encoder)?;
150 self.gyro_x.value.encode(encoder)?;
151 self.gyro_y.value.encode(encoder)?;
152 self.gyro_z.value.encode(encoder)?;
153 self.mag_x.value.encode(encoder)?;
154 self.mag_y.value.encode(encoder)?;
155 self.mag_z.value.encode(encoder)?;
156 self.roll.value.encode(encoder)?;
157 self.pitch.value.encode(encoder)?;
158 self.yaw.value.encode(encoder)?;
159 Ok(())
160 }
161}
162
163impl Decode for PositionalReadingsPayload {
164 fn decode<D: Decoder>(decoder: &mut D) -> Result<Self, DecodeError> {
165 Ok(PositionalReadingsPayload {
166 acc_x: Acceleration::new::<meter_per_second_squared>(f32::decode(decoder)?),
168 acc_y: Acceleration::new::<meter_per_second_squared>(f32::decode(decoder)?),
169 acc_z: Acceleration::new::<meter_per_second_squared>(f32::decode(decoder)?),
170 gyro_x: AngularVelocity::new::<radian_per_second>(f32::decode(decoder)?),
171 gyro_y: AngularVelocity::new::<radian_per_second>(f32::decode(decoder)?),
172 gyro_z: AngularVelocity::new::<radian_per_second>(f32::decode(decoder)?),
173 mag_x: MagneticFluxDensity::new::<tesla>(f32::decode(decoder)?),
174 mag_y: MagneticFluxDensity::new::<tesla>(f32::decode(decoder)?),
175 mag_z: MagneticFluxDensity::new::<tesla>(f32::decode(decoder)?),
176 roll: Angle::new::<radian>(f32::decode(decoder)?),
177 pitch: Angle::new::<radian>(f32::decode(decoder)?),
178 yaw: Angle::new::<radian>(f32::decode(decoder)?),
179 })
180 }
181}
182
183#[allow(unused)]
185const REGISTER_SPAN_SIZE: usize = ((Registers::Yaw as u8 - Registers::AccX as u8) * 2 + 2) as usize;
186
187#[allow(unused)]
188impl WT901 {
189 fn bulk_position_read(&mut self, pr: &mut PositionalReadingsPayload) -> Result<(), CuError> {
190 debug!("Trying to read i2c");
191
192 #[cfg(hardware)]
193 {
194 let mut buf = [0u8; REGISTER_SPAN_SIZE];
195 self.i2c
196 .write_read(WT901_I2C_ADDRESS, &[Registers::AccX as u8], &mut buf)
197 .expect("Error reading WT901");
198 pr.acc_x = convert_acc(get_vec_i16(&buf, Registers::AccX.offset()));
199 pr.acc_y = convert_acc(get_vec_i16(&buf, Registers::AccY.offset()));
200 pr.acc_z = convert_acc(get_vec_i16(&buf, Registers::AccZ.offset()));
201 pr.gyro_x = convert_ang_vel(get_vec_i16(&buf, Registers::GyroX.offset()));
202 pr.gyro_y = convert_ang_vel(get_vec_i16(&buf, Registers::GyroY.offset()));
203 pr.gyro_z = convert_ang_vel(get_vec_i16(&buf, Registers::GyroZ.offset()));
204 pr.mag_x = convert_mag(get_vec_i16(&buf, Registers::MagX.offset()));
205 pr.mag_y = convert_mag(get_vec_i16(&buf, Registers::MagY.offset()));
206 pr.mag_z = convert_mag(get_vec_i16(&buf, Registers::MagZ.offset()));
207 pr.roll = convert_angle(get_vec_i16(&buf, Registers::Roll.offset()));
208 pr.pitch = convert_angle(get_vec_i16(&buf, Registers::Pitch.offset()));
209 pr.yaw = convert_angle(get_vec_i16(&buf, Registers::Yaw.offset()));
210 }
211 Ok(())
212 }
213}
214
215impl Freezable for WT901 {
216 }
218
219impl<'cl> CuSrcTask<'cl> for WT901 {
220 type Output = output_msg!('cl, PositionalReadingsPayload);
221
222 fn new(_config: Option<&ComponentConfig>) -> CuResult<Self>
223 where
224 Self: Sized,
225 {
226 debug!("Opening {}... ", I2C_BUS);
227 #[cfg(hardware)]
228 let i2cdev = I2cdev::new(I2C_BUS).unwrap();
229 debug!("{} opened.", I2C_BUS);
230 Ok(WT901 {
231 #[cfg(hardware)]
232 i2c: Box::new(i2cdev),
233 })
234 }
235
236 fn process(&mut self, _clock: &RobotClock, new_msg: Self::Output) -> CuResult<()> {
237 let mut pos = PositionalReadingsPayload::default();
238 self.bulk_position_read(&mut pos)?;
239 new_msg.set_payload(pos);
240 Ok(())
241 }
242}
243
244#[inline]
246#[allow(dead_code)]
247fn get_vec_u16(buf: &[u8], offset: usize) -> u16 {
248 u16::from_le_bytes([buf[offset], buf[offset + 1]])
249}
250
251#[inline]
253#[allow(dead_code)]
254fn get_vec_i16(buf: &[u8], offset: usize) -> i16 {
255 i16::from_le_bytes([buf[offset], buf[offset + 1]])
256}
257
258#[allow(dead_code)]
259fn convert_acc(acc: i16) -> Acceleration {
260 let acc = acc as f32 / 32768.0 * 16.0;
262 Acceleration::new::<standard_gravity>(acc)
263}
264
265#[allow(dead_code)]
266fn convert_ang_vel(angv: i16) -> AngularVelocity {
267 let acc = (angv as f32 / 32768.0) * 2000.0;
269 AngularVelocity::new::<degree_per_second>(acc)
270}
271
272#[allow(dead_code)]
273fn convert_mag(mag: i16) -> MagneticFluxDensity {
274 let mag = (mag as f32 / 32768.0) * 8.333;
276 MagneticFluxDensity::new::<nanotesla>(mag)
277}
278
279#[allow(dead_code)]
280fn convert_angle(angle: i16) -> Angle {
281 let angle = angle as f32 / 32768.0 * 180.0;
282 Angle::new::<degree>(angle)
283}