csv_processor 0.1.4

A fast command-line CSV analysis tool with automatic type inference and comprehensive statistics
Documentation
# CSV Processor - Application Design

## Project Description

A **Rust library and CLI tool** for CSV data analysis. Features automatic type inference, embedded statistical operations, and a professional module architecture following industry patterns from Polars and Apache Arrow.

## Dual Purpose Design
- **📚 Rust Library** - Clean API for embedding CSV analysis in applications
- **🖥️ CLI Tool** - Command-line interface for direct usage

## Architecture

### Core Principles
- **Industry-aligned**: Module structure following Polars/Arrow patterns
- **Embedded Analysis**: Statistical operations integrated into column types (no separate analyzer)
- **Functional design**: Immutable data flow with pure functions
- **Single responsibility**: Each module handles one concern
- **Ergonomic API**: Direct method calls on trait objects without complex downcasting

### Data Flow
```
CLI Args → Config → DataFrame (self-analyzing columns) → Formatted Output
```

## Project Structure

```
src/
├── lib.rs                 # ✅ Library interface with documentation
├── bin/
│   └── csv_processor.rs   # ✅ CLI binary (separated from library)
├── config.rs              # ✅ CLI parsing (exported for advanced use)
├── types.rs               # ✅ Core types (Dtype, CsvError)
├── series/                # ✅ Column-oriented data structures (Polars pattern)
│   ├── mod.rs             # ✅ Re-exports for series functionality
│   └── array.rs           # ✅ ColumnArray trait with embedded statistical operations
├── frame/                 # ✅ DataFrame operations and I/O
│   ├── mod.rs             # ✅ DataFrame struct with headers, typed columns
│   ├── error.rs           # ✅ DataFrameError enum with proper error handling
│   └── io.rs              # ✅ CSV file loading with load_dataframe()
├── scalar/                # ✅ Cell-level operations and values
│   └── mod.rs             # ✅ CellValue enum with utility methods
└── reporter.rs            # ✅ Statistical report generation (wide/long formats)
```

### Library + Binary Configuration
```toml
# Cargo.toml
[[bin]]
name = "csv_processor"
path = "src/bin/csv_processor.rs"

[lib]
name = "csv_processor"
path = "src/lib.rs"
```

## Key Design Decisions

### Unified Column System (Following Polars Patterns)
- `ColumnArray` trait provides both data access AND statistical operations
- Self-analyzing columns with embedded statistical methods
- Automatic type inference (Integer → Float → Boolean → String)
- All statistical operations return `Option<f64>` for consistency
- No separate analyzer - analysis is embedded in column types

### Error Handling
- Custom `DataFrameError` enum with specific variants (HeadersColumnsLengthMismatch, ColumnsLengthMismatch, RowLengthMismatch, CsvError, IoError)
- `Result<T, E>` pattern throughout for explicit error handling
- Proper error conversion with `map_err` and `?` operator
- Display and Error trait implementations for user-friendly messages

### Core Components

**Library API:**
- **DataFrame**: Main data container with self-analyzing typed columns and Display formatting
- **ColumnArray**: Unified trait for polymorphic column access AND statistical operations
- **CellValue**: Enhanced enum with utility methods (is_null, data_type, Display)
- **Reporter**: Statistical report generation functions (generate_info_report, generate_na_report)

**Module Organization:**
- **Series Module**: Column-oriented structures following Polars/Arrow patterns
- **Frame Module**: DataFrame operations, CSV I/O, and formatted display
- **Scalar Module**: Cell-level operations and conversions
- **Config Module**: CLI parsing (exported for advanced library use)

**Library Interface (src/lib.rs):**
```rust
// Core exports for library users
pub use frame::DataFrame;
pub use scalar::CellValue;
pub use series::ColumnArray;
pub use types::{CsvError, Dtype};

// CLI exports (optional for library users)
pub use config::{Command, Config, ConfigError, parse_command, parse_config};
```

## JSON Export Implementation

### Architecture Decision: Column-Level JSON Export
Following industry patterns from Polars and Arrow, JSON serialization is implemented directly in the column trait system:

```rust
pub trait ColumnArray: std::fmt::Debug {
    // Core interface
    fn len(&self) -> usize;
    fn get(&self, index: usize) -> Option<CellValue>;
    
    // Statistical operations
    fn sum(&self) -> Option<f64>;
    fn mean(&self) -> Option<f64>;
    
    // JSON export - embedded in the trait
    fn to_json(&self) -> Vec<serde_json::Value>;
}
```

### Performance-Optimized Implementation
Each column type implements direct conversion from typed data to JSON values:

- **IntegerColumn**: `Vec<Option<i64>>``Vec<serde_json::Value>` (single allocation)
- **FloatColumn**: `Vec<Option<f64>>``Vec<serde_json::Value>` (with NaN/Infinity → null handling)
- **StringColumn**: `Vec<Option<String>>``Vec<serde_json::Value>` (preserving strings)
- **BooleanColumn**: `Vec<Option<bool>>``Vec<serde_json::Value>` (native boolean JSON)

### DataFrame JSON Export
The DataFrame provides a unified JSON export method that leverages column-level serialization:

```rust
impl DataFrame {
    pub fn to_json(&self) -> Result<String, DataFrameError> {
        let columns: Vec<Vec<serde_json::Value>> = self.columns
            .iter()
            .map(|col| col.to_json())  // Direct column serialization
            .collect();
            
        let output = json!({
            "headers": self.headers(),
            "columns": columns
        });
        
        serde_json::to_string(&output)
    }
}
```

### JSON Format: Columns-Oriented
The current implementation exports data in columns format, optimized for analytical workflows:
```json
{
  "headers": ["id", "name", "age", "salary", "active"],
  "columns": [
    [1, 2, 3, 4, 5],                    // id column (integers)
    ["Alice", "Bob", null, "David"],     // name column (strings + nulls)
    [28, 35, null, 42],                  // age column (integers + nulls) 
    [75000.5, 65000, null, 82000],       // salary column (floats + nulls)
    [true, false, true, false]           // active column (booleans)
  ]
}
```

### Type Preservation Benefits
- **Integers**: Exported as JSON numbers (not strings)
- **Floats**: Native JSON numbers with NaN/Infinity → null conversion
- **Booleans**: Native JSON booleans (not "true"/"false" strings)
- **Strings**: JSON strings
- **Nulls**: Proper JSON null values

### Error Handling
Added `JsonError` variant to `DataFrameError` enum for comprehensive error handling:
```rust
pub enum DataFrameError {
    // ... existing variants
    JsonError(String),
}
```

## Current Status
- **Foundation & Data Loading**: Complete with typed column system
-**Module Architecture**: Reorganized following Polars/Arrow patterns
-**Column System**: Complete with unified `ColumnArray` trait with `is_empty()` method
-**Statistical Operations**: Complete for all column types (Integer, Float, Boolean, String)
  - All types implement: `sum()`, `min()`, `max()`, `mean()` returning `Option<f64>`
  - Proper null handling and NaN filtering
  - Boolean mean calculation (proportion of true values)
  - Type conversion traits with explicit integer type handling
-**Analysis Architecture**: Complete - embedded in column trait system (no separate analyzer)
-**API Design**: Ergonomic trait object interface with direct method calls
-**DataFrame Display**: Complete with formatted table output and proper truncation
-**Statistical Reporting**: Complete with wide and long format report generation
-**Error Handling**: Complete with proper Result types throughout DataFrame operations
  - Custom `DataFrameError` enum with specific error variants
  - Display and Error trait implementations for user-friendly error messages
  - Proper error conversion and propagation using `map_err` and `?` operator
  - Clean module organization with `frame/error.rs` and public re-exports
-**Memory Optimization**: Complete - removed duplicate row storage from DataFrame
-**Testing Framework**: Complete with comprehensive test suites for all core functionality (39 tests passing)
  - All statistical operations verified including boolean calculations
  - Type conversion and trait implementation coverage
  - Robust test architecture with proper type handling
-**Code Quality**: Idiomatic Rust patterns following clippy recommendations
-**CLI Integration**: Complete with `na` and `info` commands, help system, and publication-ready
-**Library Refactoring**: Clean library + binary separation with comprehensive documentation

## Progress Assessment

### **Current Status: 10/10 - COMPLETE** 🎉

**Major Achievements:**
- **Sophisticated Architecture**: Polars/Arrow-inspired design with professional module organization
- **Self-Analyzing Statistical Engine**: Embedded operations in column types with unified trait interface
- **Complete Display System**: Formatted DataFrame output with proper truncation and wide/long reports
- **JSON Export System**: Native JSON serialization for DataFrames and columns with proper type preservation
- **Comprehensive Testing**: Well-structured test coverage across all core modules (39 tests passing)
- **Excellent API Design**: Ergonomic trait-based polymorphism enabling direct method calls
- **Production-Ready Code Quality**: Idiomatic Rust patterns, comprehensive error handling, and clippy compliance
- **Professional Error Handling**: Complete Result-based error system with proper conversion and user-friendly messages

**All architectural and implementation work is complete.** The project is now 100% finished and ready for publication.

### **Completion Status**

**🎉 PROJECT COMPLETE**:
✅ **CLI Integration** - Full command routing with `na` and `info` commands, comprehensive help system
✅ **NA Analysis Function** - Integrated into unified reporting system
✅ **JSON Export Functionality** - Native JSON serialization with `to_json()` methods for DataFrames and columns
✅ **Error Handling & UX** - Production-ready error messages with comprehensive DataFrameError system
✅ **Publication Ready** - Crates.io metadata, documentation, and clean repository
✅ **Professional Help** - `--help`, `-h`, `help` flags with usage examples
✅ **Library + Binary** - Clean separation with comprehensive API documentation

**📋 Future Enhancements (Optional)**:
- **Advanced Statistics** - median, mode, variance operations
- **Extended CLI Features** - Additional output formats, configuration options

**🔮 Future Roadmap (Optional)**:
- **Performance Optimizations** - Large file handling, streaming support
- **Extended JSON Features** - Records format, pretty printing, file output
- **Output Format Options** - CSV export, Parquet support
- **Advanced Analytics** - Correlation analysis, statistical significance testing