pub struct SignerBuilder<'a> { /* private fields */ }
Expand description

Builder type to construct an entity that will sign some data.

Instances will be attached to SignedDataBuilder instances where they will sign data using configured settings.

Implementations§

Construct a new entity that will sign content.

An entity is constructed from a signing key, which is mandatory.

Obtain the signature algorithm used by the signing key.

Examples found in repository?
src/signing.rs (line 339)
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    pub fn build_der(&self) -> Result<Vec<u8>, CmsError> {
        let mut signer_infos = SignerInfos::default();
        let mut seen_digest_algorithms = HashSet::new();
        let mut seen_certificates = self.certificates.clone();

        for signer in &self.signers {
            seen_digest_algorithms.insert(signer.digest_algorithm);

            if !seen_certificates
                .iter()
                .any(|x| x == &signer.signing_certificate)
            {
                seen_certificates.push(signer.signing_certificate.clone());
            }

            let version = CmsVersion::V1;
            let digest_algorithm = DigestAlgorithmIdentifier {
                algorithm: signer.digest_algorithm.into(),
                parameters: None,
            };

            let sid = SignerIdentifier::IssuerAndSerialNumber(IssuerAndSerialNumber {
                issuer: signer.signing_certificate.issuer_name().clone(),
                serial_number: signer.signing_certificate.serial_number_asn1().clone(),
            });

            // The message digest attribute is mandatory.
            //
            // Message digest is computed from override content on the signer
            // or the encapsulated content if present. The "empty" hash is a
            // valid value if no content (only signed attributes) are being signed.
            let mut hasher = signer.digest_algorithm.digester();
            if let Some(content) = &signer.message_id_content {
                hasher.update(content);
            } else {
                match &self.signed_content {
                    SignedContent::None => {}
                    SignedContent::Inline(content) | SignedContent::External(content) => {
                        hasher.update(content)
                    }
                }
            }
            let digest = hasher.finish();

            let mut signed_attributes = SignedAttributes::default();

            // The content-type field is mandatory.
            signed_attributes.push(Attribute {
                typ: Oid(Bytes::copy_from_slice(OID_CONTENT_TYPE.as_ref())),
                values: vec![AttributeValue::new(Captured::from_values(
                    Mode::Der,
                    signer.content_type.encode_ref(),
                ))],
            });

            // Set `messageDigest` field
            signed_attributes.push(Attribute {
                typ: Oid(Bytes::copy_from_slice(OID_MESSAGE_DIGEST.as_ref())),
                values: vec![AttributeValue::new(Captured::from_values(
                    Mode::Der,
                    digest.as_ref().encode(),
                ))],
            });

            // Add signing time because it is common to include.
            signed_attributes.push(Attribute {
                typ: Oid(Bytes::copy_from_slice(OID_SIGNING_TIME.as_ref())),
                values: vec![AttributeValue::new(Captured::from_values(
                    Mode::Der,
                    UtcTime::now().encode(),
                ))],
            });

            signed_attributes.extend(signer.extra_signed_attributes.iter().cloned());

            // According to RFC 5652, signed attributes are DER encoded. This means a SET
            // (which SignedAttributes is) should be sorted. But bcder doesn't appear to do
            // this. So we manually sort here.
            let signed_attributes = signed_attributes.as_sorted()?;

            let signed_attributes = Some(signed_attributes);

            let signature_algorithm = signer.signature_algorithm()?.into();

            // The function for computing the signed attributes digested content
            // is on SignerInfo. So construct an instance so we can compute the
            // signature.
            let mut signer_info = SignerInfo {
                version,
                sid,
                digest_algorithm,
                signed_attributes,
                signature_algorithm,
                signature: SignatureValue::new(Bytes::copy_from_slice(&[])),
                unsigned_attributes: None,
                signed_attributes_data: None,
            };

            // The content being signed is the DER encoded signed attributes, if present, or the
            // encapsulated content. Since we always create signed attributes above, it *must* be
            // the DER encoded signed attributes.
            let signed_content = signer_info
                .signed_attributes_digested_content()?
                .expect("presence of signed attributes should ensure this is Some(T)");

            let signature = signer.signing_key.try_sign(&signed_content)?;
            let signature_algorithm = signer.signing_key.signature_algorithm()?;

            signer_info.signature = SignatureValue::new(Bytes::from(signature.clone()));
            signer_info.signature_algorithm = signature_algorithm.into();

            if let Some(url) = &signer.time_stamp_url {
                // The message sent to the TSA (via a digest) is the signature of the signed data.
                let res = time_stamp_message_http(
                    url.clone(),
                    signature.as_ref(),
                    signer.digest_algorithm,
                )?;

                if !res.is_success() {
                    return Err(TimeStampError::Unsuccessful(res.clone()).into());
                }

                let signed_data = res
                    .signed_data()?
                    .ok_or(CmsError::TimeStampProtocol(TimeStampError::BadResponse))?;

                let mut unsigned_attributes = UnsignedAttributes::default();
                unsigned_attributes.push(Attribute {
                    typ: Oid(Bytes::copy_from_slice(OID_TIME_STAMP_TOKEN.as_ref())),
                    values: vec![AttributeValue::new(Captured::from_values(
                        Mode::Der,
                        signed_data.encode_ref(),
                    ))],
                });

                signer_info.unsigned_attributes = Some(unsigned_attributes);
            }

            signer_infos.push(signer_info);
        }

        let mut digest_algorithms = DigestAlgorithmIdentifiers::default();
        digest_algorithms.extend(seen_digest_algorithms.into_iter().map(|alg| {
            DigestAlgorithmIdentifier {
                algorithm: alg.into(),
                parameters: None,
            }
        }));

        // Many consumers prefer the issuing certificate to come before the issued
        // certificate. So we explicitly sort all the seen certificates in this order,
        // attempting for all issuing certificates to come before the issued.
        seen_certificates.sort_by(|a, b| a.compare_issuer(b));

        let mut certificates = CertificateSet::default();
        certificates.extend(
            seen_certificates
                .into_iter()
                .map(|cert| CertificateChoices::Certificate(Box::new(cert.into()))),
        );

        // The certificates could have been encountered in any order. For best results,
        // we want issuer certificates before their "children." So we apply sorting here.

        let signed_data = SignedData {
            version: CmsVersion::V1,
            digest_algorithms,
            content_info: EncapsulatedContentInfo {
                content_type: self.content_type.clone(),
                content: match &self.signed_content {
                    SignedContent::None | SignedContent::External(_) => None,
                    SignedContent::Inline(content) => {
                        Some(OctetString::new(Bytes::copy_from_slice(content)))
                    }
                },
            },
            certificates: if certificates.is_empty() {
                None
            } else {
                Some(certificates)
            },
            crls: None,
            signer_infos,
        };

        let mut ber = Vec::new();
        signed_data
            .encode_ref()
            .write_encoded(Mode::Der, &mut ber)?;

        Ok(ber)
    }

Define the content to use to calculate the message-id attribute.

In most cases, this is never called and the encapsulated content embedded within the generated message is used. However, some users omit storing the data inline and instead use a message-id digest calculated from a different source. This defines that different source.

Define the content type of the signed content.

Add an additional attribute to sign.

Examples found in repository?
src/signing.rs (lines 124-130)
123
124
125
126
127
128
129
130
131
    pub fn signed_attribute_octet_string(self, typ: Oid, data: &[u8]) -> Self {
        self.signed_attribute(
            typ,
            vec![AttributeValue::new(Captured::from_values(
                Mode::Der,
                data.encode_ref(),
            ))],
        )
    }

Add an additional OctetString signed attribute.

This is a helper for converting a byte slice to an OctetString and AttributeValue without having to go through low-level ASN.1 code.

Obtain a time-stamp token from a server.

If this is called, the URL must be a server implementing the Time-Stamp Protocol (TSP) as defined by RFC 3161. At signature generation time, the server will be contacted and the time stamp token response will be added as an unsigned attribute on the SignedData instance.

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more