credify 0.3.1

A Rust library for validating LinkedIn profile URLs with LLM-friendly error messages
Documentation

Credify

Crates.io Documentation CI License: MIT License: Apache 2.0

A robust Rust library for validating LinkedIn profile URLs with AI-first design. Built for the era of AI agents and LLMs, Credify provides both traditional validation APIs and specialized functions optimized for AI tool calling, especially with frameworks like Rig.

๐ŸŽฏ New in v0.3.0: Ergonomic Rig framework integration with ultra-simple async helpers that prevent runtime panics and provide clean, structured responses perfect for AI agents.

๐ŸŒŸ Key Features

  • ๐Ÿค– AI-First Design - Multiple API levels from simple booleans to rich structured data
  • ๐ŸŽฏ Rig Framework Optimized - Ergonomic helpers designed specifically for Rig tools
  • โšก Async & Sync APIs - Full async support to prevent blocking runtime panics
  • ๐Ÿ“Š Structured Responses - AIValidationResult with confidence scores and decisions
  • ๐Ÿ” Smart Validation - Format checking, existence verification, and intelligent fallbacks
  • ๐Ÿ“ Rich Error Context - Detailed explanations with actionable suggestions
  • ๐Ÿ›ก๏ธ Never Panics - Comprehensive error handling throughout
  • ๐Ÿš€ High Performance - Optimized for concurrent operations

๐Ÿ“ฆ Installation

[dependencies]
credify = "0.3.0"

Or use cargo add:

cargo add credify

๐Ÿš€ Quick Start

For AI Agents & Rig Framework (Recommended)

use credify::{rig_is_valid, rig_validate_text};

// Ultra-simple validation
if rig_is_valid("https://linkedin.com/in/johndoe").await {
    println!("Valid LinkedIn profile!");
}

// Get a human-readable response
let message = rig_validate_text("https://linkedin.com/in/johndoe").await;
// Returns: "โœ… Valid profile @johndoe (95% confidence)"

For Rig Tool Implementation

impl Tool for LinkedInValidator {
    async fn call(&self, args: Args) -> Result<String, Error> {
        // Just one line! No runtime panics, perfect for Rig
        Ok(credify::rig_validate_json(&args.url).await)
    }
}

๐Ÿ“š API Overview

๐ŸŽฏ Ergonomic Rig Helpers (New!)

Function Returns Use Case
rig_is_valid() bool Quick true/false checks
rig_validate_text() String One-line human-readable responses
rig_validate_json() String Clean JSON for tool responses
rig_validate() RigValidationResult Structured data with all details

๐Ÿค– AI-Optimized Functions

Function Returns Use Case
ai_validate() AIValidationResult Full structured data
ai_validate_json() String JSON for AI consumption
validate_for_llm() String Verbose text reports

๐Ÿ”ง Traditional API

Function Returns Use Case
is_valid_linkedin_profile_format() bool Format checking only
LinkedInValidator::is_valid_linkedin_profile_url() Result<bool> Full validation

๐Ÿ’ก Usage Examples

1. Rig Framework Integration (Recommended)

use credify::{rig_validate, RigValidationResult};
use rig::tool::Tool;

#[derive(Deserialize, Serialize)]
struct LinkedInChecker;

impl Tool for LinkedInChecker {
    const NAME: &'static str = "linkedin_checker";
    type Args = CheckArgs;
    type Output = String;
    type Error = MyError;

    async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
        // One line - that's it!
        Ok(credify::rig_validate_json(&args.url).await)
    }
}

// Or use structured data
async fn check_with_details(url: &str) {
    let result: RigValidationResult = credify::rig_validate(url).await;
    
    println!("Valid: {}", result.valid);
    println!("Status: {}", result.status);
    println!("Action: {}", result.action);
    println!("Confidence: {}%", result.confidence);
    
    if let Some(username) = result.username {
        println!("Username: @{}", username);
    }
}

2. AI Agent Integration

use credify::{ai_validate, AIDecision};

async fn validate_for_ai(url: &str) {
    let result = ai_validate(url).await;
    
    // Simple boolean check
    if result.is_valid {
        println!("Profile is valid!");
    }
    
    // Use confidence for nuanced decisions
    if result.confidence >= 0.9 {
        println!("High confidence validation");
    }
    
    // AI-friendly decision enum
    match result.decision {
        AIDecision::Accept => {
            // Use the profile
            println!("Accepted: {}", result.username.unwrap_or_default());
        }
        AIDecision::Retry => {
            // Network issue, try again
            println!("Temporary issue, retry in a moment");
        }
        AIDecision::Reject => {
            // Invalid URL
            println!("Invalid: {}", result.reason);
        }
    }
}

3. Quick Validation

use credify::is_valid_linkedin_profile_format;

// Format check only (no network calls)
if is_valid_linkedin_profile_format("https://linkedin.com/in/johndoe") {
    println!("Format is valid!");
}

// Full validation with network check
use credify::LinkedInValidator;

let validator = LinkedInValidator::new()?;
match validator.is_valid_linkedin_profile_url(url) {
    Ok(true) => println!("Profile exists!"),
    Ok(false) => println!("Profile not found"),
    Err(e) => println!("Error: {}", e),
}

4. Async Operations

use credify::validate_linkedin_url_async;

// Async validation
let is_valid = validate_linkedin_url_async(url).await?;

// Async with AI response
let json = credify::ai_validate_json_async(url).await;

โš ๏ธ Important: Async Usage

When using Credify in async contexts (like web servers or AI frameworks), always use the async versions to avoid runtime panics:

// โŒ WRONG - Can cause panic in async context
async fn my_tool() {
    let result = credify::ai_validate_json(url); // Panic!
}

// โœ… CORRECT - Use async version
async fn my_tool() {
    let result = credify::ai_validate_json_async(url).await; // Works!
}

// โœ… BEST - Use Rig helpers (always async)
async fn my_tool() {
    let result = credify::rig_validate_json(url).await; // Perfect!
}

๐Ÿ“Š Response Types

RigValidationResult

pub struct RigValidationResult {
    pub valid: bool,              // Simple pass/fail
    pub username: Option<String>, // LinkedIn username if found
    pub confidence: u8,           // 0-100 percentage
    pub status: String,           // Human-readable status
    pub action: String,           // Suggested action for AI
}

AIValidationResult

pub struct AIValidationResult {
    pub is_valid: bool,
    pub confidence: f32,          // 0.0 to 1.0
    pub decision: AIDecision,     // Accept/Retry/Reject
    pub username: Option<String>,
    pub reason: String,
    pub metadata: ValidationMetadata,
}

๐Ÿค– Why AI-Friendly Validation Matters

Traditional validation returns simple true/false or error codes. AI agents need rich context to make intelligent decisions:

  • Context-Rich Responses: Understand why validation failed
  • Confidence Scores: Make nuanced decisions based on certainty
  • Actionable Suggestions: Know what to do next
  • Structured Data: Easy to parse and reason about

๐Ÿ› ๏ธ Advanced Features

Custom User Agent

let validator = LinkedInValidator::new_with_user_agent(
    "MyBot/1.0 (https://mybot.com)"
)?;

Handling LinkedIn Authentication

LinkedIn often returns AUTH_REQUIRED (999 status) for valid profiles. Credify intelligently handles this:

// AUTH_REQUIRED is treated as a valid profile
let result = rig_validate(url).await;
if result.valid && result.status.contains("auth required") {
    println!("Profile likely exists but LinkedIn is blocking checks");
}

๐Ÿ“– More Examples

Check out the examples/ directory for:

  • basic.rs - Simple validation examples
  • rig_ergonomic.rs - Ergonomic Rig API showcase
  • rig_integration.rs - Full Rig framework integration
  • batch_validator.rs - Validate multiple URLs concurrently
  • llm_simple.rs - LLM-friendly validation

Run examples with:

cargo run --example rig_ergonomic

๐Ÿงช Testing

# Run all tests
cargo test

# Run with verbose output
cargo test -- --nocapture

๐Ÿ“„ License

Licensed under either of:

at your option.

๐Ÿค Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

๐Ÿ™ Acknowledgments

Built with โค๏ธ for the AI agent community. Special thanks to the Rig framework team for inspiring the ergonomic API design.