cranelift_frontend/
lib.rs

1//! Cranelift IR builder library.
2//!
3//! Provides a straightforward way to create a Cranelift IR function and fill it with instructions
4//! corresponding to your source program written in another language.
5//!
6//! To get started, create an [`FunctionBuilderContext`](struct.FunctionBuilderContext.html) and
7//! pass it as an argument to a [`FunctionBuilder`].
8//!
9//! # Mutable variables and Cranelift IR values
10//!
11//! The most interesting feature of this API is that it provides a single way to deal with all your
12//! variable problems. Indeed, the [`FunctionBuilder`] struct has a
13//! type `Variable` that should be an index of your source language variables. Then, through
14//! calling the functions
15//! [`declare_var`](FunctionBuilder::declare_var), [`def_var`](FunctionBuilder::def_var) and
16//! [`use_var`](FunctionBuilder::use_var), the [`FunctionBuilder`] will create for you all the
17//! Cranelift IR values corresponding to your variables.
18//!
19//! This API has been designed to help you translate your mutable variables into
20//! [`SSA`](https://en.wikipedia.org/wiki/Static_single_assignment_form) form.
21//! [`use_var`](FunctionBuilder::use_var) will return the Cranelift IR value
22//! that corresponds to your mutable variable at a precise point in the program. However, if you know
23//! beforehand that one of your variables is defined only once, for instance if it is the result
24//! of an intermediate expression in an expression-based language, then you can translate it
25//! directly by the Cranelift IR value returned by the instruction builder. Using the
26//! [`use_var`](FunctionBuilder::use_var) API for such an immutable variable
27//! would also work but with a slight additional overhead (the SSA algorithm does not know
28//! beforehand if a variable is immutable or not).
29//!
30//! The moral is that you should use these three functions to handle all your mutable variables,
31//! even those that are not present in the source code but artifacts of the translation. It is up
32//! to you to keep a mapping between the mutable variables of your language and their [`Variable`]
33//! index that is used by Cranelift. Caution: as the [`Variable`] is used by Cranelift to index an
34//! array containing information about your mutable variables, when you create a new [`Variable`]
35//! with `Variable::new(var_index)` you should make sure that `var_index`
36//! is provided by a counter incremented by 1 each time you encounter a new mutable variable.
37//!
38//! # Example
39//!
40//! Here is a pseudo-program we want to transform into Cranelift IR:
41//!
42//! ```clif
43//! function(x) {
44//! x, y, z : i32
45//! block0:
46//!    y = 2;
47//!    z = x + y;
48//!    jump block1
49//! block1:
50//!    z = z + y;
51//!    brif y, block3, block2
52//! block2:
53//!    z = z - x;
54//!    return y
55//! block3:
56//!    y = y - x
57//!    jump block1
58//! }
59//! ```
60//!
61//! Here is how you build the corresponding Cranelift IR function using [`FunctionBuilderContext`]:
62//!
63//! ```rust
64//! use cranelift_codegen::ir::types::*;
65//! use cranelift_codegen::ir::{AbiParam, UserFuncName, Function, InstBuilder, Signature};
66//! use cranelift_codegen::isa::CallConv;
67//! use cranelift_codegen::settings;
68//! use cranelift_codegen::verifier::verify_function;
69//! use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
70//!
71//! let mut sig = Signature::new(CallConv::SystemV);
72//! sig.returns.push(AbiParam::new(I32));
73//! sig.params.push(AbiParam::new(I32));
74//! let mut fn_builder_ctx = FunctionBuilderContext::new();
75//! let mut func = Function::with_name_signature(UserFuncName::user(0, 0), sig);
76//! {
77//!     let mut builder = FunctionBuilder::new(&mut func, &mut fn_builder_ctx);
78//!
79//!     let block0 = builder.create_block();
80//!     let block1 = builder.create_block();
81//!     let block2 = builder.create_block();
82//!     let block3 = builder.create_block();
83//!     let x = builder.declare_var(I32);
84//!     let y = builder.declare_var(I32);
85//!     let z = builder.declare_var(I32);
86//!     builder.append_block_params_for_function_params(block0);
87//!
88//!     builder.switch_to_block(block0);
89//!     builder.seal_block(block0);
90//!     {
91//!         let tmp = builder.block_params(block0)[0]; // the first function parameter
92//!         builder.def_var(x, tmp);
93//!     }
94//!     {
95//!         let tmp = builder.ins().iconst(I32, 2);
96//!         builder.def_var(y, tmp);
97//!     }
98//!     {
99//!         let arg1 = builder.use_var(x);
100//!         let arg2 = builder.use_var(y);
101//!         let tmp = builder.ins().iadd(arg1, arg2);
102//!         builder.def_var(z, tmp);
103//!     }
104//!     builder.ins().jump(block1, &[]);
105//!
106//!     builder.switch_to_block(block1);
107//!     {
108//!         let arg1 = builder.use_var(y);
109//!         let arg2 = builder.use_var(z);
110//!         let tmp = builder.ins().iadd(arg1, arg2);
111//!         builder.def_var(z, tmp);
112//!     }
113//!     {
114//!         let arg = builder.use_var(y);
115//!         builder.ins().brif(arg, block3, &[], block2, &[]);
116//!     }
117//!
118//!     builder.switch_to_block(block2);
119//!     builder.seal_block(block2);
120//!     {
121//!         let arg1 = builder.use_var(z);
122//!         let arg2 = builder.use_var(x);
123//!         let tmp = builder.ins().isub(arg1, arg2);
124//!         builder.def_var(z, tmp);
125//!     }
126//!     {
127//!         let arg = builder.use_var(y);
128//!         builder.ins().return_(&[arg]);
129//!     }
130//!
131//!     builder.switch_to_block(block3);
132//!     builder.seal_block(block3);
133//!
134//!     {
135//!         let arg1 = builder.use_var(y);
136//!         let arg2 = builder.use_var(x);
137//!         let tmp = builder.ins().isub(arg1, arg2);
138//!         builder.def_var(y, tmp);
139//!     }
140//!     builder.ins().jump(block1, &[]);
141//!     builder.seal_block(block1);
142//!
143//!     builder.finalize();
144//! }
145//!
146//! let flags = settings::Flags::new(settings::builder());
147//! let res = verify_function(&func, &flags);
148//! println!("{}", func.display());
149//! if let Err(errors) = res {
150//!     panic!("{}", errors);
151//! }
152//! ```
153
154#![deny(missing_docs)]
155#![no_std]
156
157extern crate alloc;
158
159#[cfg(feature = "std")]
160#[macro_use]
161extern crate std;
162
163#[cfg(not(feature = "std"))]
164use hashbrown::{HashMap, HashSet};
165#[cfg(feature = "std")]
166use std::collections::{HashMap, HashSet};
167
168pub use crate::frontend::{FuncInstBuilder, FunctionBuilder, FunctionBuilderContext};
169pub use crate::switch::Switch;
170pub use crate::variable::Variable;
171
172#[cfg(test)]
173macro_rules! assert_eq_output {
174    ( $left:expr, $right:expr $(,)? ) => {{
175        let left = $left;
176        let left = left.trim();
177
178        let right = $right;
179        let right = right.trim();
180
181        assert_eq!(
182            left,
183            right,
184            "assertion failed, output not equal:\n\
185             \n\
186             =========== Diff ===========\n\
187             {}\n\
188             =========== Left ===========\n\
189             {left}\n\
190             =========== Right ===========\n\
191             {right}\n\
192             ",
193            similar::TextDiff::from_lines(left, right)
194                .unified_diff()
195                .header("left", "right")
196        )
197    }};
198}
199
200mod frontend;
201mod ssa;
202mod switch;
203mod variable;
204
205/// Version number of this crate.
206pub const VERSION: &str = env!("CARGO_PKG_VERSION");