cranelift-frontend 0.68.0

Cranelift IR builder helper
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
//! A SSA-building API that handles incomplete CFGs.
//!
//! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C.,
//! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form.
//! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013.
//! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg
//!
//! https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf

use crate::Variable;
use alloc::vec::Vec;
use core::convert::TryInto;
use core::mem;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::SecondaryMap;
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
use cranelift_codegen::ir::instructions::BranchInfo;
use cranelift_codegen::ir::types::{F32, F64};
use cranelift_codegen::ir::{Block, Function, Inst, InstBuilder, InstructionData, Type, Value};
use cranelift_codegen::packed_option::PackedOption;
use smallvec::SmallVec;

/// Structure containing the data relevant the construction of SSA for a given function.
///
/// The parameter struct `Variable` corresponds to the way variables are represented in the
/// non-SSA language you're translating from.
///
/// The SSA building relies on information about the variables used and defined.
///
/// This SSA building module allows you to def and use variables on the fly while you are
/// constructing the CFG, no need for a separate SSA pass after the CFG is completed.
///
/// A basic block is said _filled_ if all the instruction that it contains have been translated,
/// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors
/// can be declared.
pub struct SSABuilder {
    // TODO: Consider a sparse representation rather than SecondaryMap-of-SecondaryMap.
    /// Records for every variable and for every relevant block, the last definition of
    /// the variable in the block.
    variables: SecondaryMap<Variable, SecondaryMap<Block, PackedOption<Value>>>,

    /// Records the position of the basic blocks and the list of values used but not defined in the
    /// block.
    ssa_blocks: SecondaryMap<Block, SSABlockData>,

    /// Call stack for use in the `use_var`/`predecessors_lookup` state machine.
    calls: Vec<Call>,
    /// Result stack for use in the `use_var`/`predecessors_lookup` state machine.
    results: Vec<Value>,

    /// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine.
    side_effects: SideEffects,
}

/// Side effects of a `use_var` or a `seal_block` method call.
pub struct SideEffects {
    /// When we want to append jump arguments to a `br_table` instruction, the critical edge is
    /// splitted and the newly created `Block`s are signaled here.
    pub split_blocks_created: Vec<Block>,
    /// When a variable is used but has never been defined before (this happens in the case of
    /// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Block`.
    /// This field signals if it is the case and return the `Block` to which the initialization has
    /// been added.
    pub instructions_added_to_blocks: Vec<Block>,
}

impl SideEffects {
    fn new() -> Self {
        Self {
            split_blocks_created: Vec::new(),
            instructions_added_to_blocks: Vec::new(),
        }
    }

    fn is_empty(&self) -> bool {
        self.split_blocks_created.is_empty() && self.instructions_added_to_blocks.is_empty()
    }
}

#[derive(Clone)]
struct PredBlock {
    block: Block,
    branch: Inst,
}

impl PredBlock {
    fn new(block: Block, branch: Inst) -> Self {
        Self { block, branch }
    }
}

type PredBlockSmallVec = SmallVec<[PredBlock; 4]>;

#[derive(Clone, Default)]
struct SSABlockData {
    // The predecessors of the Block with the block and branch instruction.
    predecessors: PredBlockSmallVec,
    // A block is sealed if all of its predecessors have been declared.
    sealed: bool,
    // List of current Block arguments for which an earlier def has not been found yet.
    undef_variables: Vec<(Variable, Value)>,
}

impl SSABlockData {
    fn add_predecessor(&mut self, pred: Block, inst: Inst) {
        debug_assert!(!self.sealed, "sealed blocks cannot accept new predecessors");
        self.predecessors.push(PredBlock::new(pred, inst));
    }

    fn remove_predecessor(&mut self, inst: Inst) -> Block {
        let pred = self
            .predecessors
            .iter()
            .position(|&PredBlock { branch, .. }| branch == inst)
            .expect("the predecessor you are trying to remove is not declared");
        self.predecessors.swap_remove(pred).block
    }
}

impl SSABuilder {
    /// Allocate a new blank SSA builder struct. Use the API function to interact with the struct.
    pub fn new() -> Self {
        Self {
            variables: SecondaryMap::with_default(SecondaryMap::new()),
            ssa_blocks: SecondaryMap::new(),
            calls: Vec::new(),
            results: Vec::new(),
            side_effects: SideEffects::new(),
        }
    }

    /// Clears a `SSABuilder` from all its data, letting it in a pristine state without
    /// deallocating memory.
    pub fn clear(&mut self) {
        self.variables.clear();
        self.ssa_blocks.clear();
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        debug_assert!(self.side_effects.is_empty());
    }

    /// Tests whether an `SSABuilder` is in a cleared state.
    pub fn is_empty(&self) -> bool {
        self.variables.is_empty()
            && self.ssa_blocks.is_empty()
            && self.calls.is_empty()
            && self.results.is_empty()
            && self.side_effects.is_empty()
    }
}

/// Small enum used for clarity in some functions.
#[derive(Debug)]
enum ZeroOneOrMore<T> {
    Zero,
    One(T),
    More,
}

/// Cases used internally by `use_var_nonlocal()` for avoiding the borrow checker.
#[derive(Debug)]
enum UseVarCases {
    Unsealed(Value),
    SealedOnePredecessor(Block),
    SealedMultiplePredecessors(Value, Block),
}

/// States for the `use_var`/`predecessors_lookup` state machine.
enum Call {
    UseVar(Block),
    FinishSealedOnePredecessor(Block),
    FinishPredecessorsLookup(Value, Block),
}

/// Emit instructions to produce a zero value in the given type.
fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value {
    if ty.is_int() {
        cur.ins().iconst(ty, 0)
    } else if ty.is_bool() {
        cur.ins().bconst(ty, false)
    } else if ty == F32 {
        cur.ins().f32const(Ieee32::with_bits(0))
    } else if ty == F64 {
        cur.ins().f64const(Ieee64::with_bits(0))
    } else if ty.is_ref() {
        cur.ins().null(ty)
    } else if ty.is_vector() {
        let scalar_ty = ty.lane_type();
        if scalar_ty.is_int() || scalar_ty.is_bool() {
            let zero = cur.func.dfg.constants.insert(
                core::iter::repeat(0)
                    .take(ty.bytes().try_into().unwrap())
                    .collect(),
            );
            cur.ins().vconst(ty, zero)
        } else if scalar_ty == F32 {
            let scalar = cur.ins().f32const(Ieee32::with_bits(0));
            cur.ins().splat(ty, scalar)
        } else if scalar_ty == F64 {
            let scalar = cur.ins().f64const(Ieee64::with_bits(0));
            cur.ins().splat(ty, scalar)
        } else {
            panic!("unimplemented scalar type: {:?}", ty)
        }
    } else {
        panic!("unimplemented type: {:?}", ty)
    }
}

/// The following methods are the API of the SSA builder. Here is how it should be used when
/// translating to Cranelift IR:
///
/// - for each basic block, create a corresponding data for SSA construction with `declare_block`;
///
/// - while traversing a basic block and translating instruction, use `def_var` and `use_var`
///   to record definitions and uses of variables, these methods will give you the corresponding
///   SSA values;
///
/// - when all the instructions in a basic block have translated, the block is said _filled_ and
///   only then you can add it as a predecessor to other blocks with `declare_block_predecessor`;
///
/// - when you have constructed all the predecessor to a basic block,
///   call `seal_block` on it with the `Function` that you are building.
///
/// This API will give you the correct SSA values to use as arguments of your instructions,
/// as well as modify the jump instruction and `Block` parameters to account for the SSA
/// Phi functions.
///
impl SSABuilder {
    /// Declares a new definition of a variable in a given basic block.
    /// The SSA value is passed as an argument because it should be created with
    /// `ir::DataFlowGraph::append_result`.
    pub fn def_var(&mut self, var: Variable, val: Value, block: Block) {
        self.variables[var][block] = PackedOption::from(val);
    }

    /// Declares a use of a variable in a given basic block. Returns the SSA value corresponding
    /// to the current SSA definition of this variable and a list of newly created Blocks that
    /// are the results of critical edge splitting for `br_table` with arguments.
    ///
    /// If the variable has never been defined in this blocks or recursively in its predecessors,
    /// this method will silently create an initializer with `iconst` or `fconst`. You are
    /// responsible for making sure that you initialize your variables.
    pub fn use_var(
        &mut self,
        func: &mut Function,
        var: Variable,
        ty: Type,
        block: Block,
    ) -> (Value, SideEffects) {
        // First, try Local Value Numbering (Algorithm 1 in the paper).
        // If the variable already has a known Value in this block, use that.
        if let Some(var_defs) = self.variables.get(var) {
            if let Some(val) = var_defs[block].expand() {
                return (val, SideEffects::new());
            }
        }

        // Otherwise, use Global Value Numbering (Algorithm 2 in the paper).
        // This resolves the Value with respect to its predecessors.
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        debug_assert!(self.side_effects.is_empty());

        // Prepare the 'calls' and 'results' stacks for the state machine.
        self.use_var_nonlocal(func, var, ty, block);

        let value = self.run_state_machine(func, var, ty);
        let side_effects = mem::replace(&mut self.side_effects, SideEffects::new());

        (value, side_effects)
    }

    /// Resolve the minimal SSA Value of `var` in `block` by traversing predecessors.
    ///
    /// This function sets up state for `run_state_machine()` but does not execute it.
    fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, block: Block) {
        // This function is split into two parts to appease the borrow checker.
        // Part 1: With a mutable borrow of self, update the DataFlowGraph if necessary.
        let data = &mut self.ssa_blocks[block];
        let case = if data.sealed {
            // The block has multiple predecessors so we append a Block parameter that
            // will serve as a value.
            if data.predecessors.len() == 1 {
                // Optimize the common case of one predecessor: no param needed.
                UseVarCases::SealedOnePredecessor(data.predecessors[0].block)
            } else {
                // Break potential cycles by eagerly adding an operandless param.
                let val = func.dfg.append_block_param(block, ty);
                UseVarCases::SealedMultiplePredecessors(val, block)
            }
        } else {
            let val = func.dfg.append_block_param(block, ty);
            data.undef_variables.push((var, val));
            UseVarCases::Unsealed(val)
        };

        // Part 2: Prepare SSABuilder state for run_state_machine().
        match case {
            UseVarCases::SealedOnePredecessor(pred) => {
                // Get the Value directly from the single predecessor.
                self.calls.push(Call::FinishSealedOnePredecessor(block));
                self.calls.push(Call::UseVar(pred));
            }
            UseVarCases::Unsealed(val) => {
                // Define the operandless param added above to prevent lookup cycles.
                self.def_var(var, val, block);

                // Nothing more can be known at this point.
                self.results.push(val);
            }
            UseVarCases::SealedMultiplePredecessors(val, block) => {
                // Define the operandless param added above to prevent lookup cycles.
                self.def_var(var, val, block);

                // Look up a use_var for each precessor.
                self.begin_predecessors_lookup(val, block);
            }
        }
    }

    /// For blocks with a single predecessor, once we've determined the value,
    /// record a local def for it for future queries to find.
    fn finish_sealed_one_predecessor(&mut self, var: Variable, block: Block) {
        let val = *self.results.last().unwrap();
        self.def_var(var, val, block);
    }

    /// Declares a new basic block to construct corresponding data for SSA construction.
    /// No predecessors are declared here and the block is not sealed.
    /// Predecessors have to be added with `declare_block_predecessor`.
    pub fn declare_block(&mut self, block: Block) {
        self.ssa_blocks[block] = SSABlockData {
            predecessors: PredBlockSmallVec::new(),
            sealed: false,
            undef_variables: Vec::new(),
        };
    }

    /// Declares a new predecessor for a `Block` and record the branch instruction
    /// of the predecessor that leads to it.
    ///
    /// The precedent `Block` must be filled before added as predecessor.
    /// Note that you must provide no jump arguments to the branch
    /// instruction when you create it since `SSABuilder` will fill them for you.
    ///
    /// Callers are expected to avoid adding the same predecessor more than once in the case
    /// of a jump table.
    pub fn declare_block_predecessor(&mut self, block: Block, pred: Block, inst: Inst) {
        debug_assert!(!self.is_sealed(block));
        self.ssa_blocks[block].add_predecessor(pred, inst)
    }

    /// Remove a previously declared Block predecessor by giving a reference to the jump
    /// instruction. Returns the basic block containing the instruction.
    ///
    /// Note: use only when you know what you are doing, this might break the SSA building problem
    pub fn remove_block_predecessor(&mut self, block: Block, inst: Inst) -> Block {
        debug_assert!(!self.is_sealed(block));
        self.ssa_blocks[block].remove_predecessor(inst)
    }

    /// Completes the global value numbering for a `Block`, all of its predecessors having been
    /// already sealed.
    ///
    /// This method modifies the function's `Layout` by adding arguments to the `Block`s to
    /// take into account the Phi function placed by the SSA algorithm.
    ///
    /// Returns the list of newly created blocks for critical edge splitting.
    pub fn seal_block(&mut self, block: Block, func: &mut Function) -> SideEffects {
        self.seal_one_block(block, func);
        mem::replace(&mut self.side_effects, SideEffects::new())
    }

    /// Completes the global value numbering for all unsealed `Block`s in `func`.
    ///
    /// It's more efficient to seal `Block`s as soon as possible, during
    /// translation, but for frontends where this is impractical to do, this
    /// function can be used at the end of translating all blocks to ensure
    /// that everything is sealed.
    pub fn seal_all_blocks(&mut self, func: &mut Function) -> SideEffects {
        // Seal all `Block`s currently in the function. This can entail splitting
        // and creation of new blocks, however such new blocks are sealed on
        // the fly, so we don't need to account for them here.
        for block in self.ssa_blocks.keys() {
            if !self.is_sealed(block) {
                self.seal_one_block(block, func);
            }
        }
        mem::replace(&mut self.side_effects, SideEffects::new())
    }

    /// Helper function for `seal_block` and
    /// `seal_all_blocks`.
    fn seal_one_block(&mut self, block: Block, func: &mut Function) {
        let block_data = &mut self.ssa_blocks[block];
        debug_assert!(
            !block_data.sealed,
            "Attempting to seal {} which is already sealed.",
            block
        );

        // Extract the undef_variables data from the block so that we
        // can iterate over it without borrowing the whole builder.
        let undef_vars = mem::replace(&mut block_data.undef_variables, Vec::new());

        // For each undef var we look up values in the predecessors and create a block parameter
        // only if necessary.
        for (var, val) in undef_vars {
            let ty = func.dfg.value_type(val);
            self.predecessors_lookup(func, val, var, ty, block);
        }
        self.mark_block_sealed(block);
    }

    /// Set the `sealed` flag for `block`.
    fn mark_block_sealed(&mut self, block: Block) {
        // Then we mark the block as sealed.
        let block_data = &mut self.ssa_blocks[block];
        debug_assert!(!block_data.sealed);
        debug_assert!(block_data.undef_variables.is_empty());
        block_data.sealed = true;

        // We could call data.predecessors.shrink_to_fit() here, if
        // important, because no further predecessors will be added
        // to this block.
    }

    /// Given the local SSA Value of a Variable in a Block, perform a recursive lookup on
    /// predecessors to determine if it is redundant with another Value earlier in the CFG.
    ///
    /// If such a Value exists and is redundant, the local Value is replaced by the
    /// corresponding non-local Value. If the original Value was a Block parameter,
    /// the parameter may be removed if redundant. Parameters are placed eagerly by callers
    /// to avoid infinite loops when looking up a Value for a Block that is in a CFG loop.
    ///
    /// Doing this lookup for each Value in each Block preserves SSA form during construction.
    ///
    /// Returns the chosen Value.
    ///
    /// ## Arguments
    ///
    /// `sentinel` is a dummy Block parameter inserted by `use_var_nonlocal()`.
    /// Its purpose is to allow detection of CFG cycles while traversing predecessors.
    ///
    /// The `sentinel: Value` and the `ty: Type` are describing the `var: Variable`
    /// that is being looked up.
    fn predecessors_lookup(
        &mut self,
        func: &mut Function,
        sentinel: Value,
        var: Variable,
        ty: Type,
        block: Block,
    ) -> Value {
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        // self.side_effects may be non-empty here so that callers can
        // accumulate side effects over multiple calls.
        self.begin_predecessors_lookup(sentinel, block);
        self.run_state_machine(func, var, ty)
    }

    /// Set up state for `run_state_machine()` to initiate non-local use lookups
    /// in all predecessors of `dest_block`, and arrange for a call to
    /// `finish_predecessors_lookup` once they complete.
    fn begin_predecessors_lookup(&mut self, sentinel: Value, dest_block: Block) {
        self.calls
            .push(Call::FinishPredecessorsLookup(sentinel, dest_block));
        // Iterate over the predecessors.
        let mut calls = mem::replace(&mut self.calls, Vec::new());
        calls.extend(
            self.predecessors(dest_block)
                .iter()
                .rev()
                .map(|&PredBlock { block: pred, .. }| Call::UseVar(pred)),
        );
        self.calls = calls;
    }

    /// Examine the values from the predecessors and compute a result value, creating
    /// block parameters as needed.
    fn finish_predecessors_lookup(
        &mut self,
        func: &mut Function,
        sentinel: Value,
        var: Variable,
        dest_block: Block,
    ) {
        let mut pred_values: ZeroOneOrMore<Value> = ZeroOneOrMore::Zero;

        // Determine how many predecessors are yielding unique, non-temporary Values.
        let num_predecessors = self.predecessors(dest_block).len();
        for &pred_val in self.results.iter().rev().take(num_predecessors) {
            match pred_values {
                ZeroOneOrMore::Zero => {
                    if pred_val != sentinel {
                        pred_values = ZeroOneOrMore::One(pred_val);
                    }
                }
                ZeroOneOrMore::One(old_val) => {
                    if pred_val != sentinel && pred_val != old_val {
                        pred_values = ZeroOneOrMore::More;
                        break;
                    }
                }
                ZeroOneOrMore::More => {
                    break;
                }
            }
        }

        // Those predecessors' Values have been examined: pop all their results.
        self.results.truncate(self.results.len() - num_predecessors);

        let result_val = match pred_values {
            ZeroOneOrMore::Zero => {
                // The variable is used but never defined before. This is an irregularity in the
                // code, but rather than throwing an error we silently initialize the variable to
                // 0. This will have no effect since this situation happens in unreachable code.
                if !func.layout.is_block_inserted(dest_block) {
                    func.layout.append_block(dest_block);
                }
                self.side_effects
                    .instructions_added_to_blocks
                    .push(dest_block);
                let zero = emit_zero(
                    func.dfg.value_type(sentinel),
                    FuncCursor::new(func).at_first_insertion_point(dest_block),
                );
                func.dfg.remove_block_param(sentinel);
                func.dfg.change_to_alias(sentinel, zero);
                zero
            }
            ZeroOneOrMore::One(pred_val) => {
                // Here all the predecessors use a single value to represent our variable
                // so we don't need to have it as a block argument.
                // We need to replace all the occurrences of val with pred_val but since
                // we can't afford a re-writing pass right now we just declare an alias.
                // Resolve aliases eagerly so that we can check for cyclic aliasing,
                // which can occur in unreachable code.
                let mut resolved = func.dfg.resolve_aliases(pred_val);
                if sentinel == resolved {
                    // Cycle detected. Break it by creating a zero value.
                    resolved = emit_zero(
                        func.dfg.value_type(sentinel),
                        FuncCursor::new(func).at_first_insertion_point(dest_block),
                    );
                }
                func.dfg.remove_block_param(sentinel);
                func.dfg.change_to_alias(sentinel, resolved);
                resolved
            }
            ZeroOneOrMore::More => {
                // There is disagreement in the predecessors on which value to use so we have
                // to keep the block argument. To avoid borrowing `self` for the whole loop,
                // temporarily detach the predecessors list and replace it with an empty list.
                let mut preds =
                    mem::replace(self.predecessors_mut(dest_block), PredBlockSmallVec::new());
                for &mut PredBlock {
                    block: ref mut pred_block,
                    branch: ref mut last_inst,
                } in &mut preds
                {
                    // We already did a full `use_var` above, so we can do just the fast path.
                    let ssa_block_map = self.variables.get(var).unwrap();
                    let pred_val = ssa_block_map.get(*pred_block).unwrap().unwrap();
                    let jump_arg = self.append_jump_argument(
                        func,
                        *last_inst,
                        *pred_block,
                        dest_block,
                        pred_val,
                        var,
                    );
                    if let Some((middle_block, middle_jump_inst)) = jump_arg {
                        *pred_block = middle_block;
                        *last_inst = middle_jump_inst;
                        self.side_effects.split_blocks_created.push(middle_block);
                    }
                }
                // Now that we're done, move the predecessors list back.
                debug_assert!(self.predecessors(dest_block).is_empty());
                *self.predecessors_mut(dest_block) = preds;

                sentinel
            }
        };

        self.results.push(result_val);
    }

    /// Appends a jump argument to a jump instruction, returns block created in case of
    /// critical edge splitting.
    fn append_jump_argument(
        &mut self,
        func: &mut Function,
        jump_inst: Inst,
        jump_inst_block: Block,
        dest_block: Block,
        val: Value,
        var: Variable,
    ) -> Option<(Block, Inst)> {
        match func.dfg.analyze_branch(jump_inst) {
            BranchInfo::NotABranch => {
                panic!("you have declared a non-branch instruction as a predecessor to a block");
            }
            // For a single destination appending a jump argument to the instruction
            // is sufficient.
            BranchInfo::SingleDest(_, _) => {
                func.dfg.append_inst_arg(jump_inst, val);
                None
            }
            BranchInfo::Table(jt, default_block) => {
                // In the case of a jump table, the situation is tricky because br_table doesn't
                // support arguments.
                // We have to split the critical edge
                let middle_block = func.dfg.make_block();
                func.layout.append_block(middle_block);
                self.declare_block(middle_block);
                self.ssa_blocks[middle_block].add_predecessor(jump_inst_block, jump_inst);
                self.mark_block_sealed(middle_block);

                if let Some(default_block) = default_block {
                    if dest_block == default_block {
                        match func.dfg[jump_inst] {
                            InstructionData::BranchTable {
                                destination: ref mut dest,
                                ..
                            } => {
                                *dest = middle_block;
                            }
                            _ => panic!("should not happen"),
                        }
                    }
                }

                for old_dest in func.jump_tables[jt].as_mut_slice() {
                    if *old_dest == dest_block {
                        *old_dest = middle_block;
                    }
                }
                let mut cur = FuncCursor::new(func).at_bottom(middle_block);
                let middle_jump_inst = cur.ins().jump(dest_block, &[val]);
                self.def_var(var, val, middle_block);
                Some((middle_block, middle_jump_inst))
            }
        }
    }

    /// Returns the list of `Block`s that have been declared as predecessors of the argument.
    fn predecessors(&self, block: Block) -> &[PredBlock] {
        &self.ssa_blocks[block].predecessors
    }

    /// Returns whether the given Block has any predecessor or not.
    pub fn has_any_predecessors(&self, block: Block) -> bool {
        !self.predecessors(block).is_empty()
    }

    /// Same as predecessors, but for &mut.
    fn predecessors_mut(&mut self, block: Block) -> &mut PredBlockSmallVec {
        &mut self.ssa_blocks[block].predecessors
    }

    /// Returns `true` if and only if `seal_block` has been called on the argument.
    pub fn is_sealed(&self, block: Block) -> bool {
        self.ssa_blocks[block].sealed
    }

    /// The main algorithm is naturally recursive: when there's a `use_var` in a
    /// block with no corresponding local defs, it recurses and performs a
    /// `use_var` in each predecessor. To avoid risking running out of callstack
    /// space, we keep an explicit stack and use a small state machine rather
    /// than literal recursion.
    fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value {
        // Process the calls scheduled in `self.calls` until it is empty.
        while let Some(call) = self.calls.pop() {
            match call {
                Call::UseVar(ssa_block) => {
                    // First we lookup for the current definition of the variable in this block
                    if let Some(var_defs) = self.variables.get(var) {
                        if let Some(val) = var_defs[ssa_block].expand() {
                            self.results.push(val);
                            continue;
                        }
                    }
                    self.use_var_nonlocal(func, var, ty, ssa_block);
                }
                Call::FinishSealedOnePredecessor(ssa_block) => {
                    self.finish_sealed_one_predecessor(var, ssa_block);
                }
                Call::FinishPredecessorsLookup(sentinel, dest_block) => {
                    self.finish_predecessors_lookup(func, sentinel, var, dest_block);
                }
            }
        }
        debug_assert_eq!(self.results.len(), 1);
        self.results.pop().unwrap()
    }
}

#[cfg(test)]
mod tests {
    use crate::ssa::SSABuilder;
    use crate::Variable;
    use cranelift_codegen::cursor::{Cursor, FuncCursor};
    use cranelift_codegen::entity::EntityRef;
    use cranelift_codegen::ir::instructions::BranchInfo;
    use cranelift_codegen::ir::types::*;
    use cranelift_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode};
    use cranelift_codegen::settings;
    use cranelift_codegen::verify_function;

    #[test]
    fn simple_block() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    z = x + z;

        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        let x_ssa = {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x_ssa, block0);
        let y_var = Variable::new(1);
        let y_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);

        let z_var = Variable::new(2);
        let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use1, y_use1)
        };
        ssa.def_var(z_var, z1_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);

        let x_use2 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let z_use1 = ssa.use_var(&mut func, z_var, I32, block0).0;
        let z2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use2, z_use1)
        };
        ssa.def_var(z_var, z2_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z2_ssa);
    }

    #[test]
    fn sequence_of_blocks() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    brnz y, block1;
        //    jump block1;
        // block1:
        //    z = x + z;
        //    jump block2;
        // block2:
        //    y = x + y;
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        let x_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x_ssa, block0);
        let y_var = Variable::new(1);
        let y_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y_ssa, block0);
        let z_var = Variable::new(2);
        let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use1, y_use1)
        };
        ssa.def_var(z_var, z1_ssa, block0);
        let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let brnz_block0_block2: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().brnz(y_use2, block2, &[])
        };
        let jump_block0_block1: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };

        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        ssa.seal_block(block1, &mut func);

        let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0;
        let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0;
        let z2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(x_use2, z_use1)
        };
        ssa.def_var(z_var, z2_ssa, block1);
        let jump_block1_block2: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        assert_eq!(x_use2, x_ssa);
        assert_eq!(z_use1, z1_ssa);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa);

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block0, brnz_block0_block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.seal_block(block2, &mut func);
        let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0;
        let y2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().iadd(x_use3, y_use3)
        };
        ssa.def_var(y_var, y2_ssa, block2);

        assert_eq!(x_ssa, x_use3);
        assert_eq!(y_ssa, y_use3);
        match func.dfg.analyze_branch(brnz_block0_block2) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block2);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
        match func.dfg.analyze_branch(jump_block0_block1) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block1);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
        match func.dfg.analyze_branch(jump_block1_block2) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block2);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
    }

    #[test]
    fn program_with_loop() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let block3 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
            cur.insert_block(block3);
        }
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    jump block1
        // block1:
        //    z = z + y;
        //    brnz y, block3;
        //    jump block2;
        // block2:
        //    z = z - x;
        //    return y
        // block3:
        //    y = y - x
        //    jump block1

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x1, block0);
        let y_var = Variable::new(1);
        let y1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y1, block0);
        let z_var = Variable::new(2);
        let x2 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y2 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x2, y2)
        };
        ssa.def_var(z_var, z1, block0);
        let jump_block0_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };
        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1);
        assert_eq!(x2, x1);
        assert_eq!(y2, y1);

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
        let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
        let z3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(z2, y3)
        };
        ssa.def_var(z_var, z3, block1);
        let y4 = ssa.use_var(&mut func, y_var, I32, block1).0;
        assert_eq!(y4, y3);
        let brnz_block1_block3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().brnz(y4, block3, &[])
        };
        let jump_block1_block2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.seal_block(block2, &mut func);
        let z4 = ssa.use_var(&mut func, z_var, I32, block2).0;
        assert_eq!(z4, z3);
        let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let z5 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().isub(z4, x3)
        };
        ssa.def_var(z_var, z5, block2);
        let y5 = ssa.use_var(&mut func, y_var, I32, block2).0;
        assert_eq!(y5, y3);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().return_(&[y5])
        };

        // block3
        ssa.declare_block(block3);
        ssa.declare_block_predecessor(block3, block1, brnz_block1_block3);
        ssa.seal_block(block3, &mut func);
        let y6 = ssa.use_var(&mut func, y_var, I32, block3).0;
        assert_eq!(y6, y3);
        let x4 = ssa.use_var(&mut func, x_var, I32, block3).0;
        assert_eq!(x4, x3);
        let y7 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
            cur.ins().isub(y6, x4)
        };
        ssa.def_var(y_var, y7, block3);
        let jump_block3_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
            cur.ins().jump(block1, &[])
        };

        // block1 after all predecessors have been visited.
        ssa.declare_block_predecessor(block1, block3, jump_block3_block1);
        ssa.seal_block(block1, &mut func);
        assert_eq!(func.dfg.block_params(block1)[0], z2);
        assert_eq!(func.dfg.block_params(block1)[1], y3);
        assert_eq!(func.dfg.resolve_aliases(x3), x1);
    }

    #[test]
    fn br_table_with_args() {
        // This tests the on-demand splitting of critical edges for br_table with jump arguments
        //
        // Here is the pseudo-program we want to translate:
        //
        // function %f {
        // jt = jump_table [block2, block1]
        // block0:
        //    x = 1;
        //    br_table x, block2, jt
        // block1:
        //    x = 2
        //    jump block2
        // block2:
        //    x = x + 1
        //    return
        // }

        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let mut jump_table = JumpTableData::new();
        jump_table.push_entry(block2);
        jump_table.push_entry(block1);
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        ssa.def_var(x_var, x1, block0);
        ssa.use_var(&mut func, x_var, I32, block0).0;
        let br_table = {
            let jt = func.create_jump_table(jump_table);
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().br_table(x1, block2, jt)
        };

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, br_table);
        ssa.seal_block(block1, &mut func);
        let x2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(x_var, x2, block1);
        let jump_block1_block2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.declare_block_predecessor(block2, block0, br_table);
        ssa.seal_block(block2, &mut func);
        let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let x4 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().iadd_imm(x3, 1)
        };
        ssa.def_var(x_var, x4, block2);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().return_(&[])
        };

        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }

    #[test]
    fn undef_values_reordering() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 0;
        //    y = 1;
        //    z = 2;
        //    jump block1;
        // block1:
        //    x = z + x;
        //    y = y - x;
        //    jump block1;
        //
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
        }

        // block0
        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        ssa.seal_block(block0, &mut func);
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 0)
        };
        ssa.def_var(x_var, x1, block0);
        let y_var = Variable::new(1);
        let y1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(y_var, y1, block0);
        let z_var = Variable::new(2);
        let z1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(z_var, z1, block0);
        let jump_block0_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[0], z2);
        let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[1], x2);
        let x3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(x2, z2)
        };
        ssa.def_var(x_var, x3, block1);
        let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
        let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[2], y3);
        let y4 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().isub(y3, x4)
        };
        ssa.def_var(y_var, y4, block1);
        let jump_block1_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block1, &[])
        };
        ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
        ssa.seal_block(block1, &mut func);
        // At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
        // in the right order.
        assert_eq!(func.dfg.block_params(block1)[1], y3);
        assert_eq!(func.dfg.block_params(block1)[0], x2);
    }

    #[test]
    fn undef() {
        // Use vars of various types which have not been defined.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let i32_var = Variable::new(0);
        let f32_var = Variable::new(1);
        let f64_var = Variable::new(2);
        let b1_var = Variable::new(3);
        let f32x4_var = Variable::new(4);
        ssa.use_var(&mut func, i32_var, I32, block0);
        ssa.use_var(&mut func, f32_var, F32, block0);
        ssa.use_var(&mut func, f64_var, F64, block0);
        ssa.use_var(&mut func, b1_var, B1, block0);
        ssa.use_var(&mut func, f32x4_var, F32X4, block0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
    }

    #[test]
    fn undef_in_entry() {
        // Use a var which has not been defined. The search should hit the
        // top of the entry block, and then fall back to inserting an iconst.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        ssa.use_var(&mut func, x_var, I32, block0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        assert_eq!(
            func.dfg[func.layout.first_inst(block0).unwrap()].opcode(),
            Opcode::Iconst
        );
    }

    #[test]
    fn undef_in_entry_sealed_after() {
        // Use a var which has not been defined, but the block is not sealed
        // until afterward. Before sealing, the SSA builder should insert an
        // block param; after sealing, it should be removed.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        ssa.use_var(&mut func, x_var, I32, block0);
        assert_eq!(func.dfg.num_block_params(block0), 1);
        ssa.seal_block(block0, &mut func);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        assert_eq!(
            func.dfg[func.layout.first_inst(block0).unwrap()].opcode(),
            Opcode::Iconst
        );
    }

    #[test]
    fn unreachable_use() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    return;
        // block1:
        //    brz x, block1;
        //    jump block1;
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().return_(&[]);
        }

        // block1
        ssa.declare_block(block1);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            let x_var = Variable::new(0);
            let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
            let brz = cur.ins().brz(x_val, block1, &[]);
            let jump_block1_block1 = cur.ins().jump(block1, &[]);
            ssa.declare_block_predecessor(block1, block1, brz);
            ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
        }
        ssa.seal_block(block1, &mut func);

        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }

    #[test]
    fn unreachable_use_with_multiple_preds() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    return;
        // block1:
        //    brz x, block2;
        //    jump block1;
        // block2:
        //    jump block1;
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().return_(&[]);
        }

        // block1
        ssa.declare_block(block1);
        let brz = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            let x_var = Variable::new(0);
            let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
            let brz = cur.ins().brz(x_val, block2, &[]);
            let jump_block1_block1 = cur.ins().jump(block1, &[]);
            ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
            brz
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, brz);
        ssa.seal_block(block2, &mut func);
        let jump_block2_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().jump(block1, &[])
        };

        // seal block1
        ssa.declare_block_predecessor(block1, block2, jump_block2_block1);
        ssa.seal_block(block1, &mut func);
        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }
}