core2 0.3.3

The bare essentials of std::io for use in no_std. Alloc support is optional.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
//! Buffering wrappers for I/O traits

use crate::io::{BufRead, Error, ErrorKind, Read, Result, Seek, SeekFrom, Write};
use core::{cmp, fmt};

/// The `BufReader<R, S>` struct adds buffering to any reader.
///
/// It can be excessively inefficient to work directly with a [`Read`] instance.
/// For example, every call to [`read`][`TcpStream::read`] on [`TcpStream`]
/// results in a system call. A `BufReader<R, S>` performs large, infrequent reads on
/// the underlying [`Read`] and maintains an in-memory buffer of the results.
///
/// `BufReader<R, S>` can improve the speed of programs that make *small* and
/// *repeated* read calls to the same file or network socket. It does not
/// help when reading very large amounts at once, or reading just one or a few
/// times. It also provides no advantage when reading from a source that is
/// already in memory, like a [`Vec`]`<u8>`.
///
/// When the `BufReader<R, S>` is dropped, the contents of its buffer will be
/// discarded. Creating multiple instances of a `BufReader<R, S>` on the same
/// stream can cause data loss. Reading from the underlying reader after
/// unwrapping the `BufReader<R, S>` with [`BufReader::into_inner`] can also cause
/// data loss.
///
/// [`TcpStream::read`]: Read::read
/// [`TcpStream`]: crate::net::TcpStream
///
/// # Examples
///
/// ```no_run
/// use std::prelude::*;
/// use core2::io::BufReader;
/// use std::fs::File;
///
/// fn main() -> core::result::Result<()> {
///     let f = File::open("log.txt")?;
///     let mut reader = BufReader::new(f);
///
///     let mut line = String::new();
///     let len = reader.read_line(&mut line)?;
///     println!("First line is {} bytes long", len);
///     Ok(())
/// }
/// ```
pub struct BufReader<R, const S: usize> {
    inner: R,
    buf: [u8; S],
    pos: usize,
    cap: usize,
}

impl<R: Read, const S: usize> BufReader<R, S> {
    /// Creates a new `BufReader<R, S>` with a default buffer capacity. The default is currently 8 KB,
    /// but may change in the future.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufReader;
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f = File::open("log.txt")?;
    ///     let reader = BufReader::new(f);
    ///     Ok(())
    /// }
    /// ```
    pub fn new(inner: R) -> BufReader<R, S> {
        BufReader {
            inner,
            buf: [0; S],
            pos: 0,
            cap: 0,
        }
    }
}

impl<R, const S: usize> BufReader<R, S> {
    /// Gets a reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufReader;
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f1 = File::open("log.txt")?;
    ///     let reader = BufReader::new(f1);
    ///
    ///     let f2 = reader.get_ref();
    ///     Ok(())
    /// }
    /// ```
    pub fn get_ref(&self) -> &R {
        &self.inner
    }

    /// Gets a mutable reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufReader;
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f1 = File::open("log.txt")?;
    ///     let mut reader = BufReader::new(f1);
    ///
    ///     let f2 = reader.get_mut();
    ///     Ok(())
    /// }
    /// ```
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.inner
    }

    /// Returns a reference to the internally buffered data.
    ///
    /// Unlike [`fill_buf`], this will not attempt to fill the buffer if it is empty.
    ///
    /// [`fill_buf`]: BufRead::fill_buf
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::{BufReader, BufRead};
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f = File::open("log.txt")?;
    ///     let mut reader = BufReader::new(f);
    ///     assert!(reader.buffer().is_empty());
    ///
    ///     if reader.fill_buf()?.len() > 0 {
    ///         assert!(!reader.buffer().is_empty());
    ///     }
    ///     Ok(())
    /// }
    /// ```
    pub fn buffer(&self) -> &[u8] {
        &self.buf[self.pos..self.cap]
    }

    /// Returns the number of bytes the internal buffer can hold at once.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::{BufReader, BufRead};
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f = File::open("log.txt")?;
    ///     let mut reader = BufReader::new(f);
    ///
    ///     let capacity = reader.capacity();
    ///     let buffer = reader.fill_buf()?;
    ///     assert!(buffer.len() <= capacity);
    ///     Ok(())
    /// }
    /// ```
    pub fn capacity(&self) -> usize {
        S
    }

    /// Unwraps this `BufReader<R, S>`, returning the underlying reader.
    ///
    /// Note that any leftover data in the internal buffer is lost. Therefore,
    /// a following read from the underlying reader may lead to data loss.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufReader;
    /// use std::fs::File;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let f1 = File::open("log.txt")?;
    ///     let reader = BufReader::new(f1);
    ///
    ///     let f2 = reader.into_inner();
    ///     Ok(())
    /// }
    /// ```
    pub fn into_inner(self) -> R {
        self.inner
    }

    /// Invalidates all data in the internal buffer.
    #[inline]
    fn discard_buffer(&mut self) {
        self.pos = 0;
        self.cap = 0;
    }
}

impl<R: Read, const S: usize> Read for BufReader<R, S> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        // If we don't have any buffered data and we're doing a massive read
        // (larger than our internal buffer), bypass our internal buffer
        // entirely.
        if self.pos == self.cap && buf.len() >= S {
            self.discard_buffer();
            return self.inner.read(buf);
        }
        let nread = {
            let mut rem = self.fill_buf()?;
            rem.read(buf)?
        };
        self.consume(nread);
        Ok(nread)
    }
}

impl<R: Read, const S: usize> BufRead for BufReader<R, S> {
    fn fill_buf(&mut self) -> Result<&[u8]> {
        // If we've reached the end of our internal buffer then we need to fetch
        // some more data from the underlying reader.
        // Branch using `>=` instead of the more correct `==`
        // to tell the compiler that the pos..cap slice is always valid.
        if self.pos >= self.cap {
            debug_assert!(self.pos == self.cap);
            self.cap = self.inner.read(&mut self.buf)?;
            self.pos = 0;
        }
        Ok(&self.buf[self.pos..self.cap])
    }

    fn consume(&mut self, amt: usize) {
        self.pos = cmp::min(self.pos + amt, self.cap);
    }
}

impl<R, const S: usize> fmt::Debug for BufReader<R, S>
where
    R: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("BufReader")
            .field("reader", &self.inner)
            .field("buffer", &format_args!("{}/{}", self.cap - self.pos, S))
            .finish()
    }
}

impl<R: Seek, const S: usize> Seek for BufReader<R, S> {
    /// Seek to an offset, in bytes, in the underlying reader.
    ///
    /// The position used for seeking with [`SeekFrom::Current`]`(_)` is the
    /// position the underlying reader would be at if the `BufReader<R, S>` had no
    /// internal buffer.
    ///
    /// Seeking always discards the internal buffer, even if the seek position
    /// would otherwise fall within it. This guarantees that calling
    /// [`BufReader::into_inner()`] immediately after a seek yields the underlying reader
    /// at the same position.
    ///
    /// To seek without discarding the internal buffer, use [`BufReader::seek_relative`].
    ///
    /// See [`std::Seek`] for more details.
    ///
    /// Note: In the edge case where you're seeking with [`SeekFrom::Current`]`(n)`
    /// where `n` minus the internal buffer length overflows an `i64`, two
    /// seeks will be performed instead of one. If the second seek returns
    /// [`Err`], the underlying reader will be left at the same position it would
    /// have if you called `seek` with [`SeekFrom::Current`]`(0)`.
    ///
    /// [`std::Seek`]: Seek
    fn seek(&mut self, pos: SeekFrom) -> Result<u64> {
        let result: u64;
        if let SeekFrom::Current(n) = pos {
            let remainder = (self.cap - self.pos) as i64;
            // it should be safe to assume that remainder fits within an i64 as the alternative
            // means we managed to allocate 8 exbibytes and that's absurd.
            // But it's not out of the realm of possibility for some weird underlying reader to
            // support seeking by i64::MIN so we need to handle underflow when subtracting
            // remainder.
            if let Some(offset) = n.checked_sub(remainder) {
                result = self.inner.seek(SeekFrom::Current(offset))?;
            } else {
                // seek backwards by our remainder, and then by the offset
                self.inner.seek(SeekFrom::Current(-remainder))?;
                self.discard_buffer();
                result = self.inner.seek(SeekFrom::Current(n))?;
            }
        } else {
            // Seeking with Start/End doesn't care about our buffer length.
            result = self.inner.seek(pos)?;
        }
        self.discard_buffer();
        Ok(result)
    }
}

/// Wraps a writer and buffers its output.
///
/// It can be excessively inefficient to work directly with something that
/// implements [`Write`]. For example, every call to
/// [`write`][`TcpStream::write`] on [`TcpStream`] results in a system call. A
/// `BufWriter<W>` keeps an in-memory buffer of data and writes it to an underlying
/// writer in large, infrequent batches.
///
/// `BufWriter<W>` can improve the speed of programs that make *small* and
/// *repeated* write calls to the same file or network socket. It does not
/// help when writing very large amounts at once, or writing just one or a few
/// times. It also provides no advantage when writing to a destination that is
/// in memory, like a [`Vec`]<u8>`.
///
/// It is critical to call [`flush`] before `BufWriter<W>` is dropped. Though
/// dropping will attempt to flush the contents of the buffer, any errors
/// that happen in the process of dropping will be ignored. Calling [`flush`]
/// ensures that the buffer is empty and thus dropping will not even attempt
/// file operations.
///
/// # Examples
///
/// Let's write the numbers one through ten to a [`TcpStream`]:
///
/// ```no_run
/// use std::prelude::*;
/// use std::net::TcpStream;
///
/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
///
/// for i in 0..10 {
///     stream.write(&[i+1]).unwrap();
/// }
/// ```
///
/// Because we're not buffering, we write each one in turn, incurring the
/// overhead of a system call per byte written. We can fix this with a
/// `BufWriter<W>`:
///
/// ```no_run
/// use std::prelude::*;
/// use core2::io::BufWriter;
/// use std::net::TcpStream;
///
/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// for i in 0..10 {
///     stream.write(&[i+1]).unwrap();
/// }
/// stream.flush().unwrap();
/// ```
///
/// By wrapping the stream with a `BufWriter<W>`, these ten writes are all grouped
/// together by the buffer and will all be written out in one system call when
/// the `stream` is flushed.
///
/// [`TcpStream::write`]: Write::write
/// [`TcpStream`]: crate::net::TcpStream
/// [`flush`]: Write::flush
pub struct BufWriter<W: Write, const S: usize> {
    inner: Option<W>,
    buf: [u8; S],
    len: usize,
    // #30888: If the inner writer panics in a call to write, we don't want to
    // write the buffered data a second time in BufWriter's destructor. This
    // flag tells the Drop impl if it should skip the flush.
    panicked: bool,
}

/// An error returned by [`BufWriter::into_inner`] which combines an error that
/// happened while writing out the buffer, and the buffered writer object
/// which may be used to recover from the condition.
///
/// # Examples
///
/// ```no_run
/// use core2::io::BufWriter;
/// use std::net::TcpStream;
///
/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// // do stuff with the stream
///
/// // we want to get our `TcpStream` back, so let's try:
///
/// let stream = match stream.into_inner() {
///     Ok(s) => s,
///     Err(e) => {
///         // Here, e is an IntoInnerError
///         panic!("An error occurred");
///     }
/// };
/// ```
#[derive(Debug)]
pub struct IntoInnerError<W>(W, Error);

impl<W, const S: usize> BufWriter<W, S>
where
    W: Write,
{
    /// Creates a new `BufWriter<W>` with a default buffer capacity. The default is currently 8 KB,
    /// but may change in the future.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    /// ```
    pub fn new(inner: W) -> BufWriter<W, S> {
        BufWriter {
            inner: Some(inner),
            buf: [0; S],
            len: 0,
            panicked: false,
        }
    }

    /// Send data in our local buffer into the inner writer, looping as
    /// necessary until either it's all been sent or an error occurs.
    ///
    /// Because all the data in the buffer has been reported to our owner as
    /// "successfully written" (by returning nonzero success values from
    /// `write`), any 0-length writes from `inner` must be reported as i/o
    /// errors from this method.
    fn flush_buf(&mut self) -> Result<()> {
        /// Helper struct to ensure the buffer is updated after all the writes
        /// are complete. It tracks the number of written bytes and drains them
        /// all from the front of the buffer when dropped.
        struct BufGuard<'a, const S: usize> {
            buffer: &'a mut [u8; S],
            written: usize,
        }

        impl<'a, const S: usize> BufGuard<'a, S> {
            fn new(buffer: &'a mut [u8; S]) -> Self {
                Self { buffer, written: 0 }
            }

            /// The unwritten part of the buffer
            fn remaining(&self) -> &[u8] {
                &self.buffer[self.written..]
            }

            /// Flag some bytes as removed from the front of the buffer
            fn consume(&mut self, amt: usize) {
                self.written += amt;
            }

            /// true if all of the bytes have been written
            fn done(&self) -> bool {
                self.written >= self.buffer.len()
            }
        }

        impl<const S: usize> Drop for BufGuard<'_, S> {
            fn drop(&mut self) {
                if self.written > 0 {
                    let mut new_buf = [0; S];
                    new_buf.copy_from_slice(&self.buffer[self.written..]);
                    *self.buffer = new_buf;
                }
            }
        }

        let mut guard = BufGuard::new(&mut self.buf);
        let inner = self.inner.as_mut().unwrap();
        while !guard.done() {
            self.panicked = true;
            let r = inner.write(guard.remaining());
            self.panicked = false;

            match r {
                Ok(0) => {
                    return Err(Error::new(
                        ErrorKind::WriteZero,
                        "failed to write the buffered data",
                    ));
                }
                Ok(n) => guard.consume(n),
                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Buffer some data without flushing it, regardless of the size of the
    /// data. Writes as much as possible without exceeding capacity. Returns
    /// the number of bytes written.
    fn write_to_buf(&mut self, buf: &[u8]) -> usize {
        let available = S - self.len;
        let amt_to_buffer = available.min(buf.len());
        (&mut self.buf[available..]).copy_from_slice(&buf[..amt_to_buffer]);
        self.len += amt_to_buffer;
        amt_to_buffer
    }

    /// Gets a reference to the underlying writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // we can use reference just like buffer
    /// let reference = buffer.get_ref();
    /// ```
    pub fn get_ref(&self) -> &W {
        self.inner.as_ref().unwrap()
    }

    /// Gets a mutable reference to the underlying writer.
    ///
    /// It is inadvisable to directly write to the underlying writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // we can use reference just like buffer
    /// let reference = buffer.get_mut();
    /// ```
    pub fn get_mut(&mut self) -> &mut W {
        self.inner.as_mut().unwrap()
    }

    /// Returns a reference to the internally buffered data.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // See how many bytes are currently buffered
    /// let bytes_buffered = buf_writer.buffer().len();
    /// ```
    pub fn buffer(&self) -> &[u8] {
        &self.buf
    }

    /// Returns the number of bytes the internal buffer can hold without flushing.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // Check the capacity of the inner buffer
    /// let capacity = buf_writer.capacity();
    /// // Calculate how many bytes can be written without flushing
    /// let without_flush = capacity - buf_writer.buffer().len();
    /// ```
    pub fn capacity(&self) -> usize {
        S
    }

    /// Unwraps this `BufWriter<W>`, returning the underlying writer.
    ///
    /// The buffer is written out before returning the writer.
    ///
    /// # Errors
    ///
    /// An [`Err`] will be returned if an error occurs while flushing the buffer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // unwrap the TcpStream and flush the buffer
    /// let stream = buffer.into_inner().unwrap();
    /// ```
    pub fn into_inner(mut self) -> core::result::Result<W, IntoInnerError<BufWriter<W, S>>> {
        match self.flush_buf() {
            Err(e) => Err(IntoInnerError(self, e)),
            Ok(()) => Ok(self.inner.take().unwrap()),
        }
    }
}

impl<W: Write, const S: usize> Write for BufWriter<W, S> {
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        if self.len + buf.len() > S {
            self.flush_buf()?;
        }
        // FIXME: Why no len > capacity? Why not buffer len == capacity? #72919
        if buf.len() >= S {
            self.panicked = true;
            let r = self.get_mut().write(buf);
            self.panicked = false;
            r
        } else {
            self.buf.copy_from_slice(buf);
            Ok(buf.len())
        }
    }

    fn write_all(&mut self, buf: &[u8]) -> Result<()> {
        // Normally, `write_all` just calls `write` in a loop. We can do better
        // by calling `self.get_mut().write_all()` directly, which avoids
        // round trips through the buffer in the event of a series of partial
        // writes in some circumstances.
        if self.len + buf.len() > S {
            self.flush_buf()?;
        }
        // FIXME: Why no len > capacity? Why not buffer len == capacity? #72919
        if buf.len() >= S {
            self.panicked = true;
            let r = self.get_mut().write_all(buf);
            self.panicked = false;
            r
        } else {
            self.buf.copy_from_slice(buf);
            Ok(())
        }
    }

    fn flush(&mut self) -> Result<()> {
        self.flush_buf().and_then(|()| self.get_mut().flush())
    }
}

impl<W: Write, const S: usize> fmt::Debug for BufWriter<W, S>
where
    W: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("BufWriter")
            .field("writer", &self.inner.as_ref().unwrap())
            .field("buffer", &format_args!("{}/{}", self.buf.len(), S))
            .finish()
    }
}

impl<W: Write + Seek, const S: usize> Seek for BufWriter<W, S> {
    /// Seek to the offset, in bytes, in the underlying writer.
    ///
    /// Seeking always writes out the internal buffer before seeking.
    fn seek(&mut self, pos: SeekFrom) -> Result<u64> {
        self.flush_buf()?;
        self.get_mut().seek(pos)
    }
}

impl<W: Write, const S: usize> Drop for BufWriter<W, S> {
    fn drop(&mut self) {
        if self.inner.is_some() && !self.panicked {
            // dtors should not panic, so we ignore a failed flush
            let _r = self.flush_buf();
        }
    }
}

impl<W> IntoInnerError<W> {
    /// Returns the error which caused the call to [`BufWriter::into_inner()`]
    /// to fail.
    ///
    /// This error was returned when attempting to write the internal buffer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // do stuff with the stream
    ///
    /// // we want to get our `TcpStream` back, so let's try:
    ///
    /// let stream = match stream.into_inner() {
    ///     Ok(s) => s,
    ///     Err(e) => {
    ///         // Here, e is an IntoInnerError, let's log the inner error.
    ///         //
    ///         // We'll just 'log' to stdout for this example.
    ///         println!("{}", e.error());
    ///
    ///         panic!("An unexpected error occurred.");
    ///     }
    /// };
    /// ```
    pub fn error(&self) -> &Error {
        &self.1
    }

    /// Returns the buffered writer instance which generated the error.
    ///
    /// The returned object can be used for error recovery, such as
    /// re-inspecting the buffer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use core2::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // do stuff with the stream
    ///
    /// // we want to get our `TcpStream` back, so let's try:
    ///
    /// let stream = match stream.into_inner() {
    ///     Ok(s) => s,
    ///     Err(e) => {
    ///         // Here, e is an IntoInnerError, let's re-examine the buffer:
    ///         let buffer = e.into_inner();
    ///
    ///         // do stuff to try to recover
    ///
    ///         // afterwards, let's just return the stream
    ///         buffer.into_inner().unwrap()
    ///     }
    /// };
    /// ```
    pub fn into_inner(self) -> W {
        self.0
    }
}

impl<W> From<IntoInnerError<W>> for Error {
    fn from(iie: IntoInnerError<W>) -> Error {
        iie.1
    }
}

impl<W> fmt::Display for IntoInnerError<W> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.error().fmt(f)
    }
}

/// Private helper struct for implementing the line-buffered writing logic.
/// This shim temporarily wraps a BufWriter, and uses its internals to
/// implement a line-buffered writer (specifically by using the internal
/// methods like write_to_buf and flush_buf). In this way, a more
/// efficient abstraction can be created than one that only had access to
/// `write` and `flush`, without needlessly duplicating a lot of the
/// implementation details of BufWriter. This also allows existing
/// `BufWriters` to be temporarily given line-buffering logic; this is what
/// enables Stdout to be alternately in line-buffered or block-buffered mode.
#[derive(Debug)]
pub(super) struct LineWriterShim<'a, W: Write, const S: usize> {
    buffer: &'a mut BufWriter<W, S>,
}

impl<'a, W: Write, const S: usize> LineWriterShim<'a, W, S> {
    pub fn new(buffer: &'a mut BufWriter<W, S>) -> Self {
        Self { buffer }
    }

    /// Get a mutable reference to the inner writer (that is, the writer
    /// wrapped by the BufWriter). Be careful with this writer, as writes to
    /// it will bypass the buffer.
    fn inner_mut(&mut self) -> &mut W {
        self.buffer.get_mut()
    }

    /// Get the content currently buffered in self.buffer
    fn buffered(&self) -> &[u8] {
        self.buffer.buffer()
    }

    /// Flush the buffer iff the last byte is a newline (indicating that an
    /// earlier write only succeeded partially, and we want to retry flushing
    /// the buffered line before continuing with a subsequent write)
    fn flush_if_completed_line(&mut self) -> Result<()> {
        match self.buffered().last().copied() {
            Some(b'\n') => self.buffer.flush_buf(),
            _ => Ok(()),
        }
    }
}

impl<'a, W: Write, const S: usize> Write for LineWriterShim<'a, W, S> {
    /// Write some data into this BufReader with line buffering. This means
    /// that, if any newlines are present in the data, the data up to the last
    /// newline is sent directly to the underlying writer, and data after it
    /// is buffered. Returns the number of bytes written.
    ///
    /// This function operates on a "best effort basis"; in keeping with the
    /// convention of `Write::write`, it makes at most one attempt to write
    /// new data to the underlying writer. If that write only reports a partial
    /// success, the remaining data will be buffered.
    ///
    /// Because this function attempts to send completed lines to the underlying
    /// writer, it will also flush the existing buffer if it ends with a
    /// newline, even if the incoming data does not contain any newlines.
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        let newline_idx = match memchr::memrchr(b'\n', buf) {
            // If there are no new newlines (that is, if this write is less than
            // one line), just do a regular buffered write (which may flush if
            // we exceed the inner buffer's size)
            None => {
                self.flush_if_completed_line()?;
                return self.buffer.write(buf);
            }
            // Otherwise, arrange for the lines to be written directly to the
            // inner writer.
            Some(newline_idx) => newline_idx + 1,
        };

        // Flush existing content to prepare for our write. We have to do this
        // before attempting to write `buf` in order to maintain consistency;
        // if we add `buf` to the buffer then try to flush it all at once,
        // we're obligated to return Ok(), which would mean suppressing any
        // errors that occur during flush.
        self.buffer.flush_buf()?;

        // This is what we're going to try to write directly to the inner
        // writer. The rest will be buffered, if nothing goes wrong.
        let lines = &buf[..newline_idx];

        // Write `lines` directly to the inner writer. In keeping with the
        // `write` convention, make at most one attempt to add new (unbuffered)
        // data. Because this write doesn't touch the BufWriter state directly,
        // and the buffer is known to be empty, we don't need to worry about
        // self.buffer.panicked here.
        let flushed = self.inner_mut().write(lines)?;

        // If buffer returns Ok(0), propagate that to the caller without
        // doing additional buffering; otherwise we're just guaranteeing
        // an "ErrorKind::WriteZero" later.
        if flushed == 0 {
            return Ok(0);
        }

        // Now that the write has succeeded, buffer the rest (or as much of
        // the rest as possible). If there were any unwritten newlines, we
        // only buffer out to the last unwritten newline that fits in the
        // buffer; this helps prevent flushing partial lines on subsequent
        // calls to LineWriterShim::write.

        // Handle the cases in order of most-common to least-common, under
        // the presumption that most writes succeed in totality, and that most
        // writes are smaller than the buffer.
        // - Is this a partial line (ie, no newlines left in the unwritten tail)
        // - If not, does the data out to the last unwritten newline fit in
        //   the buffer?
        // - If not, scan for the last newline that *does* fit in the buffer
        let tail = if flushed >= newline_idx {
            &buf[flushed..]
        } else if newline_idx - flushed <= self.buffer.capacity() {
            &buf[flushed..newline_idx]
        } else {
            let scan_area = &buf[flushed..];
            let scan_area = &scan_area[..self.buffer.capacity()];
            match memchr::memrchr(b'\n', scan_area) {
                Some(newline_idx) => &scan_area[..newline_idx + 1],
                None => scan_area,
            }
        };

        let buffered = self.buffer.write_to_buf(tail);
        Ok(flushed + buffered)
    }

    fn flush(&mut self) -> Result<()> {
        self.buffer.flush()
    }

    /// Write some data into this BufReader with line buffering. This means
    /// that, if any newlines are present in the data, the data up to the last
    /// newline is sent directly to the underlying writer, and data after it
    /// is buffered.
    ///
    /// Because this function attempts to send completed lines to the underlying
    /// writer, it will also flush the existing buffer if it contains any
    /// newlines, even if the incoming data does not contain any newlines.
    fn write_all(&mut self, buf: &[u8]) -> Result<()> {
        match memchr::memrchr(b'\n', buf) {
            // If there are no new newlines (that is, if this write is less than
            // one line), just do a regular buffered write (which may flush if
            // we exceed the inner buffer's size)
            None => {
                self.flush_if_completed_line()?;
                self.buffer.write_all(buf)
            }
            Some(newline_idx) => {
                let (lines, tail) = buf.split_at(newline_idx + 1);

                if self.buffered().is_empty() {
                    self.inner_mut().write_all(lines)?;
                } else {
                    // If there is any buffered data, we add the incoming lines
                    // to that buffer before flushing, which saves us at least
                    // one write call. We can't really do this with `write`,
                    // since we can't do this *and* not suppress errors *and*
                    // report a consistent state to the caller in a return
                    // value, but here in write_all it's fine.
                    self.buffer.write_all(lines)?;
                    self.buffer.flush_buf()?;
                }

                self.buffer.write_all(tail)
            }
        }
    }
}

/// Wraps a writer and buffers output to it, flushing whenever a newline
/// (`0x0a`, `'\n'`) is detected.
///
/// The [`BufWriter`] struct wraps a writer and buffers its output.
/// But it only does this batched write when it goes out of scope, or when the
/// internal buffer is full. Sometimes, you'd prefer to write each line as it's
/// completed, rather than the entire buffer at once. Enter `LineWriter`. It
/// does exactly that.
///
/// Like [`BufWriter`], a `LineWriter`’s buffer will also be flushed when the
/// `LineWriter` goes out of scope or when its internal buffer is full.
///
/// If there's still a partial line in the buffer when the `LineWriter` is
/// dropped, it will flush those contents.
///
/// # Examples
///
/// We can use `LineWriter` to write one line at a time, significantly
/// reducing the number of actual writes to the file.
///
/// ```no_run
/// use std::fs::{self, File};
/// use std::prelude::*;
/// use core2::io::LineWriter;
///
/// fn main() -> core::result::Result<()> {
///     let road_not_taken = b"I shall be telling this with a sigh
/// Somewhere ages and ages hence:
/// Two roads diverged in a wood, and I -
/// I took the one less traveled by,
/// And that has made all the difference.";
///
///     let file = File::create("poem.txt")?;
///     let mut file = LineWriter::new(file);
///
///     file.write_all(b"I shall be telling this with a sigh")?;
///
///     // No bytes are written until a newline is encountered (or
///     // the internal buffer is filled).
///     assert_eq!(fs::read_to_string("poem.txt")?, "");
///     file.write_all(b"\n")?;
///     assert_eq!(
///         fs::read_to_string("poem.txt")?,
///         "I shall be telling this with a sigh\n",
///     );
///
///     // Write the rest of the poem.
///     file.write_all(b"Somewhere ages and ages hence:
/// Two roads diverged in a wood, and I -
/// I took the one less traveled by,
/// And that has made all the difference.")?;
///
///     // The last line of the poem doesn't end in a newline, so
///     // we have to flush or drop the `LineWriter` to finish
///     // writing.
///     file.flush()?;
///
///     // Confirm the whole poem was written.
///     assert_eq!(fs::read("poem.txt")?, &road_not_taken[..]);
///     Ok(())
/// }
/// ```
pub struct LineWriter<W: Write, const S: usize> {
    inner: BufWriter<W, S>,
}

impl<W: Write, const S: usize> LineWriter<W, S> {
    /// Creates a new `LineWriter`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::fs::File;
    /// use core2::io::LineWriter;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let file = File::create("poem.txt")?;
    ///     let file = LineWriter::new(file);
    ///     Ok(())
    /// }
    /// ```
    pub fn new(inner: W) -> LineWriter<W, S> {
        LineWriter {
            inner: BufWriter::new(inner),
        }
    }

    /// Gets a reference to the underlying writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::fs::File;
    /// use core2::io::LineWriter;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let file = File::create("poem.txt")?;
    ///     let file = LineWriter::new(file);
    ///
    ///     let reference = file.get_ref();
    ///     Ok(())
    /// }
    /// ```
    pub fn get_ref(&self) -> &W {
        self.inner.get_ref()
    }

    /// Gets a mutable reference to the underlying writer.
    ///
    /// Caution must be taken when calling methods on the mutable reference
    /// returned as extra writes could corrupt the output stream.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::fs::File;
    /// use core2::io::LineWriter;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let file = File::create("poem.txt")?;
    ///     let mut file = LineWriter::new(file);
    ///
    ///     // we can use reference just like file
    ///     let reference = file.get_mut();
    ///     Ok(())
    /// }
    /// ```
    pub fn get_mut(&mut self) -> &mut W {
        self.inner.get_mut()
    }

    /// Unwraps this `LineWriter`, returning the underlying writer.
    ///
    /// The internal buffer is written out before returning the writer.
    ///
    /// # Errors
    ///
    /// An [`Err`] will be returned if an error occurs while flushing the buffer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::fs::File;
    /// use core2::io::LineWriter;
    ///
    /// fn main() -> core::result::Result<()> {
    ///     let file = File::create("poem.txt")?;
    ///
    ///     let writer: LineWriter<File> = LineWriter::new(file);
    ///
    ///     let file: File = writer.into_inner()?;
    ///     Ok(())
    /// }
    /// ```
    pub fn into_inner(self) -> core::result::Result<W, IntoInnerError<LineWriter<W, S>>> {
        self.inner
            .into_inner()
            .map_err(|IntoInnerError(buf, e)| IntoInnerError(LineWriter { inner: buf }, e))
    }
}

impl<W: Write, const S: usize> Write for LineWriter<W, S> {
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        LineWriterShim::new(&mut self.inner).write(buf)
    }

    fn flush(&mut self) -> Result<()> {
        self.inner.flush()
    }

    fn write_all(&mut self, buf: &[u8]) -> Result<()> {
        LineWriterShim::new(&mut self.inner).write_all(buf)
    }

    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
        LineWriterShim::new(&mut self.inner).write_fmt(fmt)
    }
}

impl<W: Write, const S: usize> fmt::Debug for LineWriter<W, S>
where
    W: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("LineWriter")
            .field("writer", &self.inner.inner)
            .field("buffer", &format_args!("{}/{}", self.inner.len, S))
            .finish()
    }
}