core_net/
ip_addr.rs

1use core::cmp::Ordering;
2use core::fmt::{self, Write};
3use core::mem::transmute;
4
5/// An IP address, either IPv4 or IPv6.
6///
7/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
8/// respective documentation for more details.
9///
10/// # Examples
11///
12/// ```
13/// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
14///
15/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
16/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
17///
18/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
19/// assert_eq!("::1".parse(), Ok(localhost_v6));
20///
21/// assert_eq!(localhost_v4.is_ipv6(), false);
22/// assert_eq!(localhost_v4.is_ipv4(), true);
23/// ```
24#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
25pub enum IpAddr {
26    /// An IPv4 address.
27    V4(Ipv4Addr),
28    /// An IPv6 address.
29    V6(Ipv6Addr),
30}
31
32/// An IPv4 address.
33///
34/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
35/// They are usually represented as four octets.
36///
37/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
38///
39/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
40///
41/// # Textual representation
42///
43/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
44/// notation, divided by `.` (this is called "dot-decimal notation").
45/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
46/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
47///
48/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
49/// [`FromStr`]: crate::str::FromStr
50///
51/// # Examples
52///
53/// ```
54/// use core_net::Ipv4Addr;
55///
56/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
57/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
58/// assert_eq!(localhost.is_loopback(), true);
59/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
60/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
61/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
62/// ```
63#[derive(Copy, Clone, PartialEq, Eq, Hash)]
64pub struct Ipv4Addr {
65    octets: [u8; 4],
66}
67
68/// An IPv6 address.
69///
70/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
71/// They are usually represented as eight 16-bit segments.
72///
73/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
74///
75/// # Embedding IPv4 Addresses
76///
77/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
78///
79/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
80/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
81///
82/// Both types of addresses are not assigned any special meaning by this implementation,
83/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
84/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
85/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
86///
87/// ### IPv4-Compatible IPv6 Addresses
88///
89/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
90/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
91///
92/// ```text
93/// |                80 bits               | 16 |      32 bits        |
94/// +--------------------------------------+--------------------------+
95/// |0000..............................0000|0000|    IPv4 address     |
96/// +--------------------------------------+----+---------------------+
97/// ```
98/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
99///
100/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
101/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
102///
103/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
104///
105/// ### IPv4-Mapped IPv6 Addresses
106///
107/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
108/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
109///
110/// ```text
111/// |                80 bits               | 16 |      32 bits        |
112/// +--------------------------------------+--------------------------+
113/// |0000..............................0000|FFFF|    IPv4 address     |
114/// +--------------------------------------+----+---------------------+
115/// ```
116/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
117///
118/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
119/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
120/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
121/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
122///
123/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
124///
125/// # Textual representation
126///
127/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
128/// an IPv6 address in text, but in general, each segments is written in hexadecimal
129/// notation, and segments are separated by `:`. For more information, see
130/// [IETF RFC 5952].
131///
132/// [`FromStr`]: crate::str::FromStr
133/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
134///
135/// # Examples
136///
137/// ```
138/// use core_net::Ipv6Addr;
139///
140/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
141/// assert_eq!("::1".parse(), Ok(localhost));
142/// assert_eq!(localhost.is_loopback(), true);
143/// ```
144#[derive(Copy, Clone, PartialEq, Eq, Hash)]
145pub struct Ipv6Addr {
146    octets: [u8; 16],
147}
148
149/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
150///
151/// # Stability Guarantees
152///
153/// Not all possible values for a multicast scope have been assigned.
154/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
155/// because of this the enum is marked as `#[non_exhaustive]`.
156///
157/// # Examples
158/// ```
159/// use core_net::Ipv6Addr;
160/// use core_net::Ipv6MulticastScope::*;
161///
162/// // An IPv6 multicast address with global scope (`ff0e::`).
163/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
164///
165/// // Will print "Global scope".
166/// match address.multicast_scope() {
167///     Some(InterfaceLocal) => println!("Interface-Local scope"),
168///     Some(LinkLocal) => println!("Link-Local scope"),
169///     Some(RealmLocal) => println!("Realm-Local scope"),
170///     Some(AdminLocal) => println!("Admin-Local scope"),
171///     Some(SiteLocal) => println!("Site-Local scope"),
172///     Some(OrganizationLocal) => println!("Organization-Local scope"),
173///     Some(Global) => println!("Global scope"),
174///     Some(_) => println!("Unknown scope"),
175///     None => println!("Not a multicast address!")
176/// }
177///
178/// ```
179///
180/// [IPv6 multicast address]: Ipv6Addr
181/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
182#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
183#[non_exhaustive]
184pub enum Ipv6MulticastScope {
185    /// Interface-Local scope.
186    InterfaceLocal,
187    /// Link-Local scope.
188    LinkLocal,
189    /// Realm-Local scope.
190    RealmLocal,
191    /// Admin-Local scope.
192    AdminLocal,
193    /// Site-Local scope.
194    SiteLocal,
195    /// Organization-Local scope.
196    OrganizationLocal,
197    /// Global scope.
198    Global,
199}
200
201impl IpAddr {
202    /// Returns [`true`] for the special 'unspecified' address.
203    ///
204    /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
205    /// [`Ipv6Addr::is_unspecified()`] for more details.
206    ///
207    /// # Examples
208    ///
209    /// ```
210    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
211    ///
212    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
213    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
214    /// ```
215    #[must_use]
216    #[inline]
217    pub const fn is_unspecified(&self) -> bool {
218        match self {
219            IpAddr::V4(ip) => ip.is_unspecified(),
220            IpAddr::V6(ip) => ip.is_unspecified(),
221        }
222    }
223
224    /// Returns [`true`] if this is a loopback address.
225    ///
226    /// See the documentation for [`Ipv4Addr::is_loopback()`] and
227    /// [`Ipv6Addr::is_loopback()`] for more details.
228    ///
229    /// # Examples
230    ///
231    /// ```
232    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
233    ///
234    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
235    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
236    /// ```
237    #[must_use]
238    #[inline]
239    pub const fn is_loopback(&self) -> bool {
240        match self {
241            IpAddr::V4(ip) => ip.is_loopback(),
242            IpAddr::V6(ip) => ip.is_loopback(),
243        }
244    }
245
246    /// Returns [`true`] if the address appears to be globally routable.
247    ///
248    /// See the documentation for [`Ipv4Addr::is_global()`] and
249    /// [`Ipv6Addr::is_global()`] for more details.
250    ///
251    /// # Examples
252    ///
253    /// ```
254    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
255    ///
256    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
257    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
258    /// ```
259    #[must_use]
260    #[inline]
261    pub const fn is_global(&self) -> bool {
262        match self {
263            IpAddr::V4(ip) => ip.is_global(),
264            IpAddr::V6(ip) => ip.is_global(),
265        }
266    }
267
268    /// Returns [`true`] if this is a multicast address.
269    ///
270    /// See the documentation for [`Ipv4Addr::is_multicast()`] and
271    /// [`Ipv6Addr::is_multicast()`] for more details.
272    ///
273    /// # Examples
274    ///
275    /// ```
276    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
277    ///
278    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
279    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
280    /// ```
281    #[must_use]
282    #[inline]
283    pub const fn is_multicast(&self) -> bool {
284        match self {
285            IpAddr::V4(ip) => ip.is_multicast(),
286            IpAddr::V6(ip) => ip.is_multicast(),
287        }
288    }
289
290    /// Returns [`true`] if this address is in a range designated for documentation.
291    ///
292    /// See the documentation for [`Ipv4Addr::is_documentation()`] and
293    /// [`Ipv6Addr::is_documentation()`] for more details.
294    ///
295    /// # Examples
296    ///
297    /// ```
298    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
299    ///
300    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
301    /// assert_eq!(
302    ///     IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
303    ///     true
304    /// );
305    /// ```
306    #[must_use]
307    #[inline]
308    pub const fn is_documentation(&self) -> bool {
309        match self {
310            IpAddr::V4(ip) => ip.is_documentation(),
311            IpAddr::V6(ip) => ip.is_documentation(),
312        }
313    }
314
315    /// Returns [`true`] if this address is in a range designated for benchmarking.
316    ///
317    /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
318    /// [`Ipv6Addr::is_benchmarking()`] for more details.
319    ///
320    /// # Examples
321    ///
322    /// ```
323    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
324    ///
325    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
326    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
327    /// ```
328    #[must_use]
329    #[inline]
330    pub const fn is_benchmarking(&self) -> bool {
331        match self {
332            IpAddr::V4(ip) => ip.is_benchmarking(),
333            IpAddr::V6(ip) => ip.is_benchmarking(),
334        }
335    }
336
337    /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
338    /// otherwise.
339    ///
340    /// [`IPv4` address]: IpAddr::V4
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
346    ///
347    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
348    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
349    /// ```
350    #[must_use]
351    #[inline]
352    pub const fn is_ipv4(&self) -> bool {
353        matches!(self, IpAddr::V4(_))
354    }
355
356    /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
357    /// otherwise.
358    ///
359    /// [`IPv6` address]: IpAddr::V6
360    ///
361    /// # Examples
362    ///
363    /// ```
364    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
365    ///
366    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
367    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
368    /// ```
369    #[must_use]
370    #[inline]
371    pub const fn is_ipv6(&self) -> bool {
372        matches!(self, IpAddr::V6(_))
373    }
374
375    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 addresses, otherwise it
376    /// return `self` as-is.
377    ///
378    /// # Examples
379    ///
380    /// ```
381    /// use core_net::{IpAddr, Ipv4Addr, Ipv6Addr};
382    ///
383    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
384    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
385    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
386    /// ```
387    #[inline]
388    #[must_use = "this returns the result of the operation, \
389                  without modifying the original"]
390    pub const fn to_canonical(&self) -> IpAddr {
391        match self {
392            &v4 @ IpAddr::V4(_) => v4,
393            IpAddr::V6(v6) => v6.to_canonical(),
394        }
395    }
396}
397
398impl Ipv4Addr {
399    /// Creates a new IPv4 address from four eight-bit octets.
400    ///
401    /// The result will represent the IP address `a`.`b`.`c`.`d`.
402    ///
403    /// # Examples
404    ///
405    /// ```
406    /// use core_net::Ipv4Addr;
407    ///
408    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
409    /// ```
410    #[must_use]
411    #[inline]
412    pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
413        Ipv4Addr { octets: [a, b, c, d] }
414    }
415
416    /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
417    ///
418    /// # Examples
419    ///
420    /// ```
421    /// use core_net::Ipv4Addr;
422    ///
423    /// let addr = Ipv4Addr::LOCALHOST;
424    /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
425    /// ```
426    pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
427
428    /// An IPv4 address representing an unspecified address: `0.0.0.0`
429    ///
430    /// This corresponds to the constant `INADDR_ANY` in other languages.
431    ///
432    /// # Examples
433    ///
434    /// ```
435    /// use core_net::Ipv4Addr;
436    ///
437    /// let addr = Ipv4Addr::UNSPECIFIED;
438    /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
439    /// ```
440    #[doc(alias = "INADDR_ANY")]
441    pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
442
443    /// An IPv4 address representing the broadcast address: `255.255.255.255`
444    ///
445    /// # Examples
446    ///
447    /// ```
448    /// use core_net::Ipv4Addr;
449    ///
450    /// let addr = Ipv4Addr::BROADCAST;
451    /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
452    /// ```
453    pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
454
455    /// Returns the four eight-bit integers that make up this address.
456    ///
457    /// # Examples
458    ///
459    /// ```
460    /// use core_net::Ipv4Addr;
461    ///
462    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
463    /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
464    /// ```
465    #[must_use]
466    #[inline]
467    pub const fn octets(&self) -> [u8; 4] {
468        self.octets
469    }
470
471    /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
472    ///
473    /// This property is defined in _UNIX Network Programming, Second Edition_,
474    /// W. Richard Stevens, p. 891; see also [ip7].
475    ///
476    /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
477    ///
478    /// # Examples
479    ///
480    /// ```
481    /// use core_net::Ipv4Addr;
482    ///
483    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
484    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
485    /// ```
486    #[must_use]
487    #[inline]
488    pub const fn is_unspecified(&self) -> bool {
489        u32::from_be_bytes(self.octets) == 0
490    }
491
492    /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
493    ///
494    /// This property is defined by [IETF RFC 1122].
495    ///
496    /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
497    ///
498    /// # Examples
499    ///
500    /// ```
501    /// use core_net::Ipv4Addr;
502    ///
503    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
504    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
505    /// ```
506    #[must_use]
507    #[inline]
508    pub const fn is_loopback(&self) -> bool {
509        self.octets()[0] == 127
510    }
511
512    /// Returns [`true`] if this is a private address.
513    ///
514    /// The private address ranges are defined in [IETF RFC 1918] and include:
515    ///
516    ///  - `10.0.0.0/8`
517    ///  - `172.16.0.0/12`
518    ///  - `192.168.0.0/16`
519    ///
520    /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
521    ///
522    /// # Examples
523    ///
524    /// ```
525    /// use core_net::Ipv4Addr;
526    ///
527    /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
528    /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
529    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
530    /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
531    /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
532    /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
533    /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
534    /// ```
535    #[must_use]
536    #[inline]
537    pub const fn is_private(&self) -> bool {
538        match self.octets() {
539            [10, ..] => true,
540            [172, b, ..] if b >= 16 && b <= 31 => true,
541            [192, 168, ..] => true,
542            _ => false,
543        }
544    }
545
546    /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
547    ///
548    /// This property is defined by [IETF RFC 3927].
549    ///
550    /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
551    ///
552    /// # Examples
553    ///
554    /// ```
555    /// use core_net::Ipv4Addr;
556    ///
557    /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
558    /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
559    /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
560    /// ```
561    #[must_use]
562    #[inline]
563    pub const fn is_link_local(&self) -> bool {
564        matches!(self.octets(), [169, 254, ..])
565    }
566
567    /// Returns [`true`] if the address appears to be globally reachable
568    /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
569    /// Whether or not an address is practically reachable will depend on your network configuration.
570    ///
571    /// Most IPv4 addresses are globally reachable;
572    /// unless they are specifically defined as *not* globally reachable.
573    ///
574    /// Non-exhaustive list of notable addresses that are not globally reachable:
575    ///
576    /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
577    /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
578    /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
579    /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
580    /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
581    /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
582    /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
583    /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
584    /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
585    ///
586    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
587    ///
588    /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
589    /// [unspecified address]: Ipv4Addr::UNSPECIFIED
590    /// [broadcast address]: Ipv4Addr::BROADCAST
591
592    ///
593    /// # Examples
594    ///
595    /// ```
596    /// use core_net::Ipv4Addr;
597    ///
598    /// // Most IPv4 addresses are globally reachable:
599    /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
600    ///
601    /// // However some addresses have been assigned a special meaning
602    /// // that makes them not globally reachable. Some examples are:
603    ///
604    /// // The unspecified address (`0.0.0.0`)
605    /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
606    ///
607    /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
608    /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
609    /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
610    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
611    ///
612    /// // Addresses in the shared address space (`100.64.0.0/10`)
613    /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
614    ///
615    /// // The loopback addresses (`127.0.0.0/8`)
616    /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
617    ///
618    /// // Link-local addresses (`169.254.0.0/16`)
619    /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
620    ///
621    /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
622    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
623    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
624    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
625    ///
626    /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
627    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
628    ///
629    /// // Reserved addresses (`240.0.0.0/4`)
630    /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
631    ///
632    /// // The broadcast address (`255.255.255.255`)
633    /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
634    ///
635    /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
636    /// ```
637    #[must_use]
638    #[inline]
639    pub const fn is_global(&self) -> bool {
640        !(self.octets()[0] == 0 // "This network"
641            || self.is_private()
642            || self.is_shared()
643            || self.is_loopback()
644            || self.is_link_local()
645            // addresses reserved for future protocols (`192.0.0.0/24`)
646            ||(self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0)
647            || self.is_documentation()
648            || self.is_benchmarking()
649            || self.is_reserved()
650            || self.is_broadcast())
651    }
652
653    /// Returns [`true`] if this address is part of the Shared Address Space defined in
654    /// [IETF RFC 6598] (`100.64.0.0/10`).
655    ///
656    /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
657    ///
658    /// # Examples
659    ///
660    /// ```
661    /// use core_net::Ipv4Addr;
662    ///
663    /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
664    /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
665    /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
666    /// ```
667    #[must_use]
668    #[inline]
669    pub const fn is_shared(&self) -> bool {
670        self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
671    }
672
673    /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
674    /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
675    /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
676    ///
677    /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
678    /// [errata 423]: https://www.rfc-editor.org/errata/eid423
679    ///
680    /// # Examples
681    ///
682    /// ```
683    /// use core_net::Ipv4Addr;
684    ///
685    /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
686    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
687    /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
688    /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
689    /// ```
690    #[must_use]
691    #[inline]
692    pub const fn is_benchmarking(&self) -> bool {
693        self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
694    }
695
696    /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
697    /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
698    /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
699    /// it is obviously not reserved for future use.
700    ///
701    /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
702    ///
703    /// # Warning
704    ///
705    /// As IANA assigns new addresses, this method will be
706    /// updated. This may result in non-reserved addresses being
707    /// treated as reserved in code that relies on an outdated version
708    /// of this method.
709    ///
710    /// # Examples
711    ///
712    /// ```
713    /// use core_net::Ipv4Addr;
714    ///
715    /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
716    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
717    ///
718    /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
719    /// // The broadcast address is not considered as reserved for future use by this implementation
720    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
721    /// ```
722    #[must_use]
723    #[inline]
724    pub const fn is_reserved(&self) -> bool {
725        self.octets()[0] & 240 == 240 && !self.is_broadcast()
726    }
727
728    /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
729    ///
730    /// Multicast addresses have a most significant octet between `224` and `239`,
731    /// and is defined by [IETF RFC 5771].
732    ///
733    /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
734    ///
735    /// # Examples
736    ///
737    /// ```
738    /// use core_net::Ipv4Addr;
739    ///
740    /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
741    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
742    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
743    /// ```
744    #[must_use]
745    #[inline]
746    pub const fn is_multicast(&self) -> bool {
747        self.octets()[0] >= 224 && self.octets()[0] <= 239
748    }
749
750    /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
751    ///
752    /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
753    ///
754    /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
755    ///
756    /// # Examples
757    ///
758    /// ```
759    /// use core_net::Ipv4Addr;
760    ///
761    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
762    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
763    /// ```
764    #[must_use]
765    #[inline]
766    pub const fn is_broadcast(&self) -> bool {
767        u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
768    }
769
770    /// Returns [`true`] if this address is in a range designated for documentation.
771    ///
772    /// This is defined in [IETF RFC 5737]:
773    ///
774    /// - `192.0.2.0/24` (TEST-NET-1)
775    /// - `198.51.100.0/24` (TEST-NET-2)
776    /// - `203.0.113.0/24` (TEST-NET-3)
777    ///
778    /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
779    ///
780    /// # Examples
781    ///
782    /// ```
783    /// use core_net::Ipv4Addr;
784    ///
785    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
786    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
787    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
788    /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
789    /// ```
790    #[must_use]
791    #[inline]
792    pub const fn is_documentation(&self) -> bool {
793        matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
794    }
795
796    /// Converts this address to an [IPv4-compatible] [`IPv6` address].
797    ///
798    /// `a.b.c.d` becomes `::a.b.c.d`
799    ///
800    /// Note that IPv4-compatible addresses have been officially deprecated.
801    /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
802    ///
803    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
804    /// [`IPv6` address]: Ipv6Addr
805    ///
806    /// # Examples
807    ///
808    /// ```
809    /// use core_net::{Ipv4Addr, Ipv6Addr};
810    ///
811    /// assert_eq!(
812    ///     Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
813    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
814    /// );
815    /// ```
816    #[must_use = "this returns the result of the operation, \
817                  without modifying the original"]
818    #[inline]
819    pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
820        let [a, b, c, d] = self.octets();
821        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
822    }
823
824    /// Converts this address to an [IPv4-mapped] [`IPv6` address].
825    ///
826    /// `a.b.c.d` becomes `::ffff:a.b.c.d`
827    ///
828    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
829    /// [`IPv6` address]: Ipv6Addr
830    ///
831    /// # Examples
832    ///
833    /// ```
834    /// use core_net::{Ipv4Addr, Ipv6Addr};
835    ///
836    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
837    ///            Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
838    /// ```
839    #[must_use = "this returns the result of the operation, \
840                  without modifying the original"]
841    #[inline]
842    pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
843        let [a, b, c, d] = self.octets();
844        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
845    }
846}
847
848impl fmt::Display for IpAddr {
849    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
850        match self {
851            IpAddr::V4(ip) => ip.fmt(fmt),
852            IpAddr::V6(ip) => ip.fmt(fmt),
853        }
854    }
855}
856
857impl fmt::Debug for IpAddr {
858    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
859        fmt::Display::fmt(self, fmt)
860    }
861}
862
863impl From<Ipv4Addr> for IpAddr {
864    /// Copies this address to a new `IpAddr::V4`.
865    ///
866    /// # Examples
867    ///
868    /// ```
869    /// use core_net::{IpAddr, Ipv4Addr};
870    ///
871    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
872    ///
873    /// assert_eq!(
874    ///     IpAddr::V4(addr),
875    ///     IpAddr::from(addr)
876    /// )
877    /// ```
878    #[inline]
879    fn from(ipv4: Ipv4Addr) -> IpAddr {
880        IpAddr::V4(ipv4)
881    }
882}
883
884impl From<Ipv6Addr> for IpAddr {
885    /// Copies this address to a new `IpAddr::V6`.
886    ///
887    /// # Examples
888    ///
889    /// ```
890    /// use core_net::{IpAddr, Ipv6Addr};
891    ///
892    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
893    ///
894    /// assert_eq!(
895    ///     IpAddr::V6(addr),
896    ///     IpAddr::from(addr)
897    /// );
898    /// ```
899    #[inline]
900    fn from(ipv6: Ipv6Addr) -> IpAddr {
901        IpAddr::V6(ipv6)
902    }
903}
904
905impl fmt::Display for Ipv4Addr {
906    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
907        let octets = self.octets();
908
909        // If there are no alignment requirements, write the IP address directly to `f`.
910        // Otherwise, write it to a local buffer and then use `f.pad`.
911        if fmt.precision().is_none() && fmt.width().is_none() {
912            write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
913        } else {
914            const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
915
916            let mut buf = String::with_capacity(LONGEST_IPV4_ADDR.len());
917            // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
918            write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
919
920            fmt.pad(buf.as_str())
921        }
922    }
923}
924
925impl fmt::Debug for Ipv4Addr {
926    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
927        fmt::Display::fmt(self, fmt)
928    }
929}
930
931impl PartialEq<Ipv4Addr> for IpAddr {
932    #[inline]
933    fn eq(&self, other: &Ipv4Addr) -> bool {
934        match self {
935            IpAddr::V4(v4) => v4 == other,
936            IpAddr::V6(_) => false,
937        }
938    }
939}
940
941impl PartialEq<IpAddr> for Ipv4Addr {
942    #[inline]
943    fn eq(&self, other: &IpAddr) -> bool {
944        match other {
945            IpAddr::V4(v4) => self == v4,
946            IpAddr::V6(_) => false,
947        }
948    }
949}
950
951impl PartialOrd for Ipv4Addr {
952    #[inline]
953    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
954        Some(self.cmp(other))
955    }
956}
957
958impl PartialOrd<Ipv4Addr> for IpAddr {
959    #[inline]
960    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
961        match self {
962            IpAddr::V4(v4) => v4.partial_cmp(other),
963            IpAddr::V6(_) => Some(Ordering::Greater),
964        }
965    }
966}
967
968impl PartialOrd<IpAddr> for Ipv4Addr {
969    #[inline]
970    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
971        match other {
972            IpAddr::V4(v4) => self.partial_cmp(v4),
973            IpAddr::V6(_) => Some(Ordering::Less),
974        }
975    }
976}
977
978impl Ord for Ipv4Addr {
979    #[inline]
980    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
981        self.octets.cmp(&other.octets)
982    }
983}
984
985impl From<Ipv4Addr> for u32 {
986    /// Converts an `Ipv4Addr` into a host byte order `u32`.
987    ///
988    /// # Examples
989    ///
990    /// ```
991    /// use core_net::Ipv4Addr;
992    ///
993    /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
994    /// assert_eq!(0x12345678, u32::from(addr));
995    /// ```
996    #[inline]
997    fn from(ip: Ipv4Addr) -> u32 {
998        u32::from_be_bytes(ip.octets)
999    }
1000}
1001
1002impl From<u32> for Ipv4Addr {
1003    /// Converts a host byte order `u32` into an `Ipv4Addr`.
1004    ///
1005    /// # Examples
1006    ///
1007    /// ```
1008    /// use core_net::Ipv4Addr;
1009    ///
1010    /// let addr = Ipv4Addr::from(0x12345678);
1011    /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
1012    /// ```
1013    #[inline]
1014    fn from(ip: u32) -> Ipv4Addr {
1015        Ipv4Addr { octets: ip.to_be_bytes() }
1016    }
1017}
1018
1019impl From<[u8; 4]> for Ipv4Addr {
1020    /// Creates an `Ipv4Addr` from a four element byte array.
1021    ///
1022    /// # Examples
1023    ///
1024    /// ```
1025    /// use core_net::Ipv4Addr;
1026    ///
1027    /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1028    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1029    /// ```
1030    #[inline]
1031    fn from(octets: [u8; 4]) -> Ipv4Addr {
1032        Ipv4Addr { octets }
1033    }
1034}
1035
1036impl From<[u8; 4]> for IpAddr {
1037    /// Creates an `IpAddr::V4` from a four element byte array.
1038    ///
1039    /// # Examples
1040    ///
1041    /// ```
1042    /// use core_net::{IpAddr, Ipv4Addr};
1043    ///
1044    /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1045    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1046    /// ```
1047    #[inline]
1048    fn from(octets: [u8; 4]) -> IpAddr {
1049        IpAddr::V4(Ipv4Addr::from(octets))
1050    }
1051}
1052
1053impl Ipv6Addr {
1054    /// Creates a new IPv6 address from eight 16-bit segments.
1055    ///
1056    /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```
1061    /// use core_net::Ipv6Addr;
1062    ///
1063    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1064    /// ```
1065    #[must_use]
1066    #[inline]
1067    pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1068        let addr16 = [
1069            a.to_be(),
1070            b.to_be(),
1071            c.to_be(),
1072            d.to_be(),
1073            e.to_be(),
1074            f.to_be(),
1075            g.to_be(),
1076            h.to_be(),
1077        ];
1078        Ipv6Addr {
1079            // All elements in `addr16` are big endian.
1080            // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1081            octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1082        }
1083    }
1084
1085    /// An IPv6 address representing localhost: `::1`.
1086    ///
1087    /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1088    /// languages.
1089    ///
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// use core_net::Ipv6Addr;
1094    ///
1095    /// let addr = Ipv6Addr::LOCALHOST;
1096    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1097    /// ```
1098    #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1099    #[doc(alias = "in6addr_loopback")]
1100    pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1101
1102    /// An IPv6 address representing the unspecified address: `::`
1103    ///
1104    /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1105    ///
1106    /// # Examples
1107    ///
1108    /// ```
1109    /// use core_net::Ipv6Addr;
1110    ///
1111    /// let addr = Ipv6Addr::UNSPECIFIED;
1112    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1113    /// ```
1114    #[doc(alias = "IN6ADDR_ANY_INIT")]
1115    #[doc(alias = "in6addr_any")]
1116    pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1117
1118    /// Returns the eight 16-bit segments that make up this address.
1119    ///
1120    /// # Examples
1121    ///
1122    /// ```
1123    /// use core_net::Ipv6Addr;
1124    ///
1125    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1126    ///            [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1127    /// ```
1128    #[must_use]
1129    #[inline]
1130    pub const fn segments(&self) -> [u16; 8] {
1131        // All elements in `self.octets` must be big endian.
1132        // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1133        let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1134        // We want native endian u16
1135        [
1136            u16::from_be(a),
1137            u16::from_be(b),
1138            u16::from_be(c),
1139            u16::from_be(d),
1140            u16::from_be(e),
1141            u16::from_be(f),
1142            u16::from_be(g),
1143            u16::from_be(h),
1144        ]
1145    }
1146
1147    /// Returns [`true`] for the special 'unspecified' address (`::`).
1148    ///
1149    /// This property is defined in [IETF RFC 4291].
1150    ///
1151    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1152    ///
1153    /// # Examples
1154    ///
1155    /// ```
1156    /// use core_net::Ipv6Addr;
1157    ///
1158    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1159    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1160    /// ```
1161    #[must_use]
1162    #[inline]
1163    pub const fn is_unspecified(&self) -> bool {
1164        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1165    }
1166
1167    /// Returns [`true`] if this is the [loopback address] (`::1`),
1168    /// as defined in [IETF RFC 4291 section 2.5.3].
1169    ///
1170    /// Contrary to IPv4, in IPv6 there is only one loopback address.
1171    ///
1172    /// [loopback address]: Ipv6Addr::LOCALHOST
1173    /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1174    ///
1175    /// # Examples
1176    ///
1177    /// ```
1178    /// use core_net::Ipv6Addr;
1179    ///
1180    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1181    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1182    /// ```
1183    #[must_use]
1184    #[inline]
1185    pub const fn is_loopback(&self) -> bool {
1186        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1187    }
1188
1189    /// Returns [`true`] if the address appears to be globally reachable
1190    /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1191    /// Whether or not an address is practically reachable will depend on your network configuration.
1192    ///
1193    /// Most IPv6 addresses are globally reachable;
1194    /// unless they are specifically defined as *not* globally reachable.
1195    ///
1196    /// Non-exhaustive list of notable addresses that are not globally reachable:
1197    /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1198    /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1199    /// - IPv4-mapped addresses
1200    /// - Addresses reserved for benchmarking
1201    /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1202    /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1203    /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1204    ///
1205    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1206    ///
1207    /// Note that an address having global scope is not the same as being globally reachable,
1208    /// and there is no direct relation between the two concepts: There exist addresses with global scope
1209    /// that are not globally reachable (for example unique local addresses),
1210    /// and addresses that are globally reachable without having global scope
1211    /// (multicast addresses with non-global scope).
1212    ///
1213    /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1214    /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1215    /// [loopback address]: Ipv6Addr::LOCALHOST
1216    ///
1217    /// # Examples
1218    ///
1219    /// ```
1220    /// use core_net::Ipv6Addr;
1221    ///
1222    /// // Most IPv6 addresses are globally reachable:
1223    /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1224    ///
1225    /// // However some addresses have been assigned a special meaning
1226    /// // that makes them not globally reachable. Some examples are:
1227    ///
1228    /// // The unspecified address (`::`)
1229    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1230    ///
1231    /// // The loopback address (`::1`)
1232    /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1233    ///
1234    /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1235    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1236    ///
1237    /// // Addresses reserved for benchmarking (`2001:2::/48`)
1238    /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1239    ///
1240    /// // Addresses reserved for documentation (`2001:db8::/32`)
1241    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1242    ///
1243    /// // Unique local addresses (`fc00::/7`)
1244    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1245    ///
1246    /// // Unicast addresses with link-local scope (`fe80::/10`)
1247    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1248    ///
1249    /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1250    /// ```
1251    #[must_use]
1252    #[inline]
1253    pub const fn is_global(&self) -> bool {
1254        !(self.is_unspecified()
1255            || self.is_loopback()
1256            // IPv4-mapped Address (`::ffff:0:0/96`)
1257            || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1258            // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1259            || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1260            // Discard-Only Address Block (`100::/64`)
1261            || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1262            // IETF Protocol Assignments (`2001::/23`)
1263            || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1264                && !(
1265                    // Port Control Protocol Anycast (`2001:1::1`)
1266                    u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1267                    // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1268                    || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1269                    // AMT (`2001:3::/32`)
1270                    || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1271                    // AS112-v6 (`2001:4:112::/48`)
1272                    || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1273                    // ORCHIDv2 (`2001:20::/28`)
1274                    || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x2F)
1275                ))
1276            || self.is_documentation()
1277            || self.is_unique_local()
1278            || self.is_unicast_link_local())
1279    }
1280
1281    /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1282    ///
1283    /// This property is defined in [IETF RFC 4193].
1284    ///
1285    /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1286    ///
1287    /// # Examples
1288    ///
1289    /// ```
1290    /// use core_net::Ipv6Addr;
1291    ///
1292    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1293    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1294    /// ```
1295    #[must_use]
1296    #[inline]
1297    pub const fn is_unique_local(&self) -> bool {
1298        (self.segments()[0] & 0xfe00) == 0xfc00
1299    }
1300
1301    /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1302    /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1303    ///
1304    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1305    /// [multicast address]: Ipv6Addr::is_multicast
1306    ///
1307    /// # Examples
1308    ///
1309    /// ```
1310    /// use core_net::Ipv6Addr;
1311    ///
1312    /// // The unspecified and loopback addresses are unicast.
1313    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1314    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1315    ///
1316    /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1317    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1318    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1319    /// ```
1320    #[must_use]
1321    #[inline]
1322    pub const fn is_unicast(&self) -> bool {
1323        !self.is_multicast()
1324    }
1325
1326    /// Returns `true` if the address is a unicast address with link-local scope,
1327    /// as defined in [RFC 4291].
1328    ///
1329    /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1330    /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1331    /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1332    ///
1333    /// ```text
1334    /// | 10 bits  |         54 bits         |          64 bits           |
1335    /// +----------+-------------------------+----------------------------+
1336    /// |1111111010|           0             |       interface ID         |
1337    /// +----------+-------------------------+----------------------------+
1338    /// ```
1339    /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1340    /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1341    /// and those addresses will have link-local scope.
1342    ///
1343    /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1344    /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1345    ///
1346    /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1347    /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1348    /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1349    /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1350    /// [loopback address]: Ipv6Addr::LOCALHOST
1351    ///
1352    /// # Examples
1353    ///
1354    /// ```
1355    /// use core_net::Ipv6Addr;
1356    ///
1357    /// // The loopback address (`::1`) does not actually have link-local scope.
1358    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1359    ///
1360    /// // Only addresses in `fe80::/10` have link-local scope.
1361    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1362    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1363    ///
1364    /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1365    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1366    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1367    /// ```
1368    #[must_use]
1369    #[inline]
1370    pub const fn is_unicast_link_local(&self) -> bool {
1371        (self.segments()[0] & 0xffc0) == 0xfe80
1372    }
1373
1374    /// Returns [`true`] if this is an address reserved for documentation
1375    /// (`2001:db8::/32`).
1376    ///
1377    /// This property is defined in [IETF RFC 3849].
1378    ///
1379    /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1380    ///
1381    /// # Examples
1382    ///
1383    /// ```
1384    /// use core_net::Ipv6Addr;
1385    ///
1386    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1387    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1388    /// ```
1389    #[must_use]
1390    #[inline]
1391    pub const fn is_documentation(&self) -> bool {
1392        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
1393    }
1394
1395    /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1396    ///
1397    /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1398    /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1399    ///
1400    /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1401    /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1402    ///
1403    /// ```
1404    /// use core_net::Ipv6Addr;
1405    ///
1406    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1407    /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1408    /// ```
1409    #[must_use]
1410    #[inline]
1411    pub const fn is_benchmarking(&self) -> bool {
1412        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1413    }
1414
1415    /// Returns [`true`] if the address is a globally routable unicast address.
1416    ///
1417    /// The following return false:
1418    ///
1419    /// - the loopback address
1420    /// - the link-local addresses
1421    /// - unique local addresses
1422    /// - the unspecified address
1423    /// - the address range reserved for documentation
1424    ///
1425    /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1426    ///
1427    /// ```no_rust
1428    /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1429    /// be supported in new implementations (i.e., new implementations must treat this prefix as
1430    /// Global Unicast).
1431    /// ```
1432    ///
1433    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1434    ///
1435    /// # Examples
1436    ///
1437    /// ```
1438    /// use core_net::Ipv6Addr;
1439    ///
1440    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1441    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1442    /// ```
1443    #[must_use]
1444    #[inline]
1445    pub const fn is_unicast_global(&self) -> bool {
1446        self.is_unicast()
1447            && !self.is_loopback()
1448            && !self.is_unicast_link_local()
1449            && !self.is_unique_local()
1450            && !self.is_unspecified()
1451            && !self.is_documentation()
1452            && !self.is_benchmarking()
1453    }
1454
1455    /// Returns the address's multicast scope if the address is multicast.
1456    ///
1457    /// # Examples
1458    ///
1459    /// ```
1460    /// use core_net::{Ipv6Addr, Ipv6MulticastScope};
1461    ///
1462    /// assert_eq!(
1463    ///     Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1464    ///     Some(Ipv6MulticastScope::Global)
1465    /// );
1466    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1467    /// ```
1468    #[must_use]
1469    #[inline]
1470    pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1471        if self.is_multicast() {
1472            match self.segments()[0] & 0x000f {
1473                1 => Some(Ipv6MulticastScope::InterfaceLocal),
1474                2 => Some(Ipv6MulticastScope::LinkLocal),
1475                3 => Some(Ipv6MulticastScope::RealmLocal),
1476                4 => Some(Ipv6MulticastScope::AdminLocal),
1477                5 => Some(Ipv6MulticastScope::SiteLocal),
1478                8 => Some(Ipv6MulticastScope::OrganizationLocal),
1479                14 => Some(Ipv6MulticastScope::Global),
1480                _ => None,
1481            }
1482        } else {
1483            None
1484        }
1485    }
1486
1487    /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1488    ///
1489    /// This property is defined by [IETF RFC 4291].
1490    ///
1491    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1492    ///
1493    /// # Examples
1494    ///
1495    /// ```
1496    /// use core_net::Ipv6Addr;
1497    ///
1498    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1499    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1500    /// ```
1501    #[must_use]
1502    #[inline]
1503    pub const fn is_multicast(&self) -> bool {
1504        (self.segments()[0] & 0xff00) == 0xff00
1505    }
1506
1507    /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1508    /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1509    ///
1510    /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1511    /// All addresses *not* starting with `::ffff` will return `None`.
1512    ///
1513    /// [`IPv4` address]: Ipv4Addr
1514    /// [IPv4-mapped]: Ipv6Addr
1515    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1516    ///
1517    /// # Examples
1518    ///
1519    /// ```
1520    /// use core_net::{Ipv4Addr, Ipv6Addr};
1521    ///
1522    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1523    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1524    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1525    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1526    /// ```
1527    #[must_use = "this returns the result of the operation, \
1528                  without modifying the original"]
1529    #[inline]
1530    pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1531        match self.octets() {
1532            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1533                Some(Ipv4Addr::new(a, b, c, d))
1534            }
1535            _ => None,
1536        }
1537    }
1538
1539    /// Converts this address to an [`IPv4` address] if it is either
1540    /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1541    /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1542    /// otherwise returns [`None`].
1543    ///
1544    /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1545    /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1546    ///
1547    /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1548    /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1549    ///
1550    /// [`IPv4` address]: Ipv4Addr
1551    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1552    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1553    /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1554    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1555    ///
1556    /// # Examples
1557    ///
1558    /// ```
1559    /// use core_net::{Ipv4Addr, Ipv6Addr};
1560    ///
1561    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1562    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1563    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1564    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1565    ///            Some(Ipv4Addr::new(0, 0, 0, 1)));
1566    /// ```
1567    #[must_use = "this returns the result of the operation, \
1568                  without modifying the original"]
1569    #[inline]
1570    pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1571        if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1572            let [a, b] = ab.to_be_bytes();
1573            let [c, d] = cd.to_be_bytes();
1574            Some(Ipv4Addr::new(a, b, c, d))
1575        } else {
1576            None
1577        }
1578    }
1579
1580    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped addresses, otherwise it
1581    /// returns self wrapped in an `IpAddr::V6`.
1582    ///
1583    /// # Examples
1584    ///
1585    /// ```
1586    /// use core_net::Ipv6Addr;
1587    ///
1588    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1589    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1590    /// ```
1591    #[must_use = "this returns the result of the operation, \
1592                  without modifying the original"]
1593    #[inline]
1594    pub const fn to_canonical(&self) -> IpAddr {
1595        if let Some(mapped) = self.to_ipv4_mapped() {
1596            return IpAddr::V4(mapped);
1597        }
1598        IpAddr::V6(*self)
1599    }
1600
1601    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
1602    ///
1603    /// ```
1604    /// use core_net::Ipv6Addr;
1605    ///
1606    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
1607    ///            [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
1608    /// ```
1609    #[must_use]
1610    #[inline]
1611    pub const fn octets(&self) -> [u8; 16] {
1612        self.octets
1613    }
1614}
1615
1616/// Write an Ipv6Addr, conforming to the canonical style described by
1617/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
1618impl fmt::Display for Ipv6Addr {
1619    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1620        // If there are no alignment requirements, write the IP address directly to `f`.
1621        // Otherwise, write it to a local buffer and then use `f.pad`.
1622        if f.precision().is_none() && f.width().is_none() {
1623            let segments = self.segments();
1624
1625            // Special case for :: and ::1; otherwise they get written with the
1626            // IPv4 formatter
1627            if self.is_unspecified() {
1628                f.write_str("::")
1629            } else if self.is_loopback() {
1630                f.write_str("::1")
1631            } else if let Some(ipv4) = self.to_ipv4() {
1632                match segments[5] {
1633                    // IPv4 Compatible address
1634                    0 => write!(f, "::{}", ipv4),
1635                    // IPv4 Mapped address
1636                    0xffff => write!(f, "::ffff:{}", ipv4),
1637                    _ => unreachable!(),
1638                }
1639            } else {
1640                #[derive(Copy, Clone, Default)]
1641                struct Span {
1642                    start: usize,
1643                    len: usize,
1644                }
1645
1646                // Find the inner 0 span
1647                let zeroes = {
1648                    let mut longest = Span::default();
1649                    let mut current = Span::default();
1650
1651                    for (i, &segment) in segments.iter().enumerate() {
1652                        if segment == 0 {
1653                            if current.len == 0 {
1654                                current.start = i;
1655                            }
1656
1657                            current.len += 1;
1658
1659                            if current.len > longest.len {
1660                                longest = current;
1661                            }
1662                        } else {
1663                            current = Span::default();
1664                        }
1665                    }
1666
1667                    longest
1668                };
1669
1670                /// Write a colon-separated part of the address
1671                #[inline]
1672                fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
1673                    if let Some((first, tail)) = chunk.split_first() {
1674                        write!(f, "{:x}", first)?;
1675                        for segment in tail {
1676                            f.write_char(':')?;
1677                            write!(f, "{:x}", segment)?;
1678                        }
1679                    }
1680                    Ok(())
1681                }
1682
1683                if zeroes.len > 1 {
1684                    fmt_subslice(f, &segments[..zeroes.start])?;
1685                    f.write_str("::")?;
1686                    fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
1687                } else {
1688                    fmt_subslice(f, &segments)
1689                }
1690            }
1691        } else {
1692            const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
1693
1694            let mut buf = String::with_capacity(LONGEST_IPV6_ADDR.len());
1695            // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
1696            write!(buf, "{}", self).unwrap();
1697
1698            f.pad(buf.as_str())
1699        }
1700    }
1701}
1702
1703impl fmt::Debug for Ipv6Addr {
1704    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1705        fmt::Display::fmt(self, fmt)
1706    }
1707}
1708
1709impl PartialEq<IpAddr> for Ipv6Addr {
1710    #[inline]
1711    fn eq(&self, other: &IpAddr) -> bool {
1712        match other {
1713            IpAddr::V4(_) => false,
1714            IpAddr::V6(v6) => self == v6,
1715        }
1716    }
1717}
1718
1719impl PartialEq<Ipv6Addr> for IpAddr {
1720    #[inline]
1721    fn eq(&self, other: &Ipv6Addr) -> bool {
1722        match self {
1723            IpAddr::V4(_) => false,
1724            IpAddr::V6(v6) => v6 == other,
1725        }
1726    }
1727}
1728
1729impl PartialOrd for Ipv6Addr {
1730    #[inline]
1731    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
1732        Some(self.cmp(other))
1733    }
1734}
1735
1736impl PartialOrd<Ipv6Addr> for IpAddr {
1737    #[inline]
1738    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
1739        match self {
1740            IpAddr::V4(_) => Some(Ordering::Less),
1741            IpAddr::V6(v6) => v6.partial_cmp(other),
1742        }
1743    }
1744}
1745
1746impl PartialOrd<IpAddr> for Ipv6Addr {
1747    #[inline]
1748    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1749        match other {
1750            IpAddr::V4(_) => Some(Ordering::Greater),
1751            IpAddr::V6(v6) => self.partial_cmp(v6),
1752        }
1753    }
1754}
1755
1756impl Ord for Ipv6Addr {
1757    #[inline]
1758    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
1759        self.segments().cmp(&other.segments())
1760    }
1761}
1762
1763impl From<Ipv6Addr> for u128 {
1764    /// Convert an `Ipv6Addr` into a host byte order `u128`.
1765    ///
1766    /// # Examples
1767    ///
1768    /// ```
1769    /// use core_net::Ipv6Addr;
1770    ///
1771    /// let addr = Ipv6Addr::new(
1772    ///     0x1020, 0x3040, 0x5060, 0x7080,
1773    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1774    /// );
1775    /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
1776    /// ```
1777    #[inline]
1778    fn from(ip: Ipv6Addr) -> u128 {
1779        u128::from_be_bytes(ip.octets)
1780    }
1781}
1782
1783impl From<u128> for Ipv6Addr {
1784    /// Convert a host byte order `u128` into an `Ipv6Addr`.
1785    ///
1786    /// # Examples
1787    ///
1788    /// ```
1789    /// use core_net::Ipv6Addr;
1790    ///
1791    /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
1792    /// assert_eq!(
1793    ///     Ipv6Addr::new(
1794    ///         0x1020, 0x3040, 0x5060, 0x7080,
1795    ///         0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1796    ///     ),
1797    ///     addr);
1798    /// ```
1799    #[inline]
1800    fn from(ip: u128) -> Ipv6Addr {
1801        Ipv6Addr::from(ip.to_be_bytes())
1802    }
1803}
1804
1805impl From<[u8; 16]> for Ipv6Addr {
1806    /// Creates an `Ipv6Addr` from a sixteen element byte array.
1807    ///
1808    /// # Examples
1809    ///
1810    /// ```
1811    /// use core_net::Ipv6Addr;
1812    ///
1813    /// let addr = Ipv6Addr::from([
1814    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
1815    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
1816    /// ]);
1817    /// assert_eq!(
1818    ///     Ipv6Addr::new(
1819    ///         0x1918, 0x1716,
1820    ///         0x1514, 0x1312,
1821    ///         0x1110, 0x0f0e,
1822    ///         0x0d0c, 0x0b0a
1823    ///     ),
1824    ///     addr
1825    /// );
1826    /// ```
1827    #[inline]
1828    fn from(octets: [u8; 16]) -> Ipv6Addr {
1829        Ipv6Addr { octets }
1830    }
1831}
1832
1833impl From<[u16; 8]> for Ipv6Addr {
1834    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1835    ///
1836    /// # Examples
1837    ///
1838    /// ```
1839    /// use core_net::Ipv6Addr;
1840    ///
1841    /// let addr = Ipv6Addr::from([
1842    ///     525u16, 524u16, 523u16, 522u16,
1843    ///     521u16, 520u16, 519u16, 518u16,
1844    /// ]);
1845    /// assert_eq!(
1846    ///     Ipv6Addr::new(
1847    ///         0x20d, 0x20c,
1848    ///         0x20b, 0x20a,
1849    ///         0x209, 0x208,
1850    ///         0x207, 0x206
1851    ///     ),
1852    ///     addr
1853    /// );
1854    /// ```
1855    #[inline]
1856    fn from(segments: [u16; 8]) -> Ipv6Addr {
1857        let [a, b, c, d, e, f, g, h] = segments;
1858        Ipv6Addr::new(a, b, c, d, e, f, g, h)
1859    }
1860}
1861
1862impl From<[u8; 16]> for IpAddr {
1863    /// Creates an `IpAddr::V6` from a sixteen element byte array.
1864    ///
1865    /// # Examples
1866    ///
1867    /// ```
1868    /// use core_net::{IpAddr, Ipv6Addr};
1869    ///
1870    /// let addr = IpAddr::from([
1871    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
1872    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
1873    /// ]);
1874    /// assert_eq!(
1875    ///     IpAddr::V6(Ipv6Addr::new(
1876    ///         0x1918, 0x1716,
1877    ///         0x1514, 0x1312,
1878    ///         0x1110, 0x0f0e,
1879    ///         0x0d0c, 0x0b0a
1880    ///     )),
1881    ///     addr
1882    /// );
1883    /// ```
1884    #[inline]
1885    fn from(octets: [u8; 16]) -> IpAddr {
1886        IpAddr::V6(Ipv6Addr::from(octets))
1887    }
1888}
1889
1890impl From<[u16; 8]> for IpAddr {
1891    /// Creates an `IpAddr::V6` from an eight element 16-bit array.
1892    ///
1893    /// # Examples
1894    ///
1895    /// ```
1896    /// use core_net::{IpAddr, Ipv6Addr};
1897    ///
1898    /// let addr = IpAddr::from([
1899    ///     525u16, 524u16, 523u16, 522u16,
1900    ///     521u16, 520u16, 519u16, 518u16,
1901    /// ]);
1902    /// assert_eq!(
1903    ///     IpAddr::V6(Ipv6Addr::new(
1904    ///         0x20d, 0x20c,
1905    ///         0x20b, 0x20a,
1906    ///         0x209, 0x208,
1907    ///         0x207, 0x206
1908    ///     )),
1909    ///     addr
1910    /// );
1911    /// ```
1912    #[inline]
1913    fn from(segments: [u16; 8]) -> IpAddr {
1914        IpAddr::V6(Ipv6Addr::from(segments))
1915    }
1916}