1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#![feature(portable_simd, array_chunks)]

use std::{
    ops::BitAnd,
    simd::{Mask, Simd, SimdPartialEq, ToBitMask},
};

#[cfg(all(not(target_feature = "avx2"), not(target_feature = "sse2")))]
const BYTES: usize = 8;

#[cfg(all(target_feature = "sse2", not(target_feature = "avx2")))]
const BYTES: usize = 16;

#[cfg(target_feature = "avx2")]
const BYTES: usize = 32;

#[macro_export]
macro_rules! pattern {
    ($($elem:tt),+) => {
        &[$(pattern!(@el $elem)),+]
    };
    (@el $v:expr) => {
        Some($v as u8)
    };
    (@el $v:tt) => {
        None
    };
}

pub type OwnedPattern = Vec<Option<u8>>;
pub type Pattern<'a> = &'a [Option<u8>];

pub struct PatternChunk {
    pub first_byte: Simd<u8, BYTES>,
    pub mask: Mask<i8, BYTES>,
    pub bytes: Simd<u8, BYTES>,
}

pub struct PreparedPattern {
    pub chunks: Vec<PatternChunk>,
    pub orig_pat: OwnedPattern,
    pub size: usize,
    pub padded_size: usize,
}

impl<'a> From<Pattern<'a>> for PreparedPattern {
    fn from(pat: Pattern) -> Self {
        // get size extended to next chunk
        let size = if pat.len() % BYTES == 0 {
            pat.len()
        } else {
            pat.len() + (BYTES - (pat.len() % BYTES))
        };

        let bytes: Vec<u8> = pat
            .into_iter()
            .map(|x| match x {
                Some(x) => *x,
                None => 0u8,
            })
            .collect();

        // TODO: remove wildcards from start and end of pattern
        // TODO: handle wildcard prefixes

        let mask: Vec<bool> = pat.into_iter().map(|x| x.is_some()).collect();

        let mut bytes_extended = vec![0u8; size];

        bytes_extended[0..pat.len()].copy_from_slice(&bytes);

        let mut mask_extended = vec![false; size];

        mask_extended[0..pat.len()].copy_from_slice(&mask);

        let chunks: Vec<PatternChunk> = bytes_extended
            .array_chunks::<BYTES>()
            .zip(mask_extended.array_chunks::<BYTES>())
            .map(|(bytes, mask)| PatternChunk {
                first_byte: Simd::from_array([bytes[0]; BYTES]),
                mask: Mask::from_array(*mask),
                bytes: Simd::from_array(*bytes),
            })
            .collect();

        Self {
            chunks,
            orig_pat: pat.to_owned(),
            size: pat.len(),
            padded_size: size,
        }
    }
}

// precompute data for pattern in SIMD chunks.
// SIMD search binary, data[0] is matched, match data[1..n]

pub struct PatternSearcher<'data> {
    data: &'data [u8],
    remaining_data: &'data [u8],
    pattern: PreparedPattern,
}

impl<'data> PatternSearcher<'data> {
    pub fn new(data: &'data [u8], pattern: Pattern) -> Self {
        Self {
            data,
            remaining_data: data,
            pattern: pattern.into(),
        }
    }
}

impl<'data> Iterator for PatternSearcher<'data> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        'main: loop {
            if self.remaining_data.len() < self.pattern.size {
                // pattern is not findable anymore.
                break None;
            }

            if self.remaining_data.len() < self.pattern.padded_size {
                // pattern is no longer SIMD-findable. manually find.
                fn find_pattern(region: &[u8], pattern: Pattern) -> Option<usize> {
                    region.windows(pattern.len()).position(|wnd| {
                        wnd.iter().zip(pattern).all(|(v, p)| match p {
                            Some(x) => *v == *x,
                            None => true,
                        })
                    })
                }

                let result = find_pattern(self.remaining_data, &self.pattern.orig_pat);

                break match result {
                    Some(offset) => {
                        let result = offset + self.data.len() - self.remaining_data.len();
                        self.remaining_data = &self.remaining_data[offset + 1..];

                        Some(result)
                    }
                    None => None,
                };
            }

            let mut current_search = self.remaining_data;
            let mut current_offset = 0usize;
            let mut first_chunk = true;

            for chunk in &self.pattern.chunks {
                let search = Simd::from_slice(&current_search[..BYTES]);

                let first_byte = search.simd_eq(chunk.first_byte).to_bitmask();

                if first_byte == 0 {
                    if first_chunk {
                        // this is the first block. the next block may contain the first again
                        // advance current cursor to the next block and restart pattern verification
                        self.remaining_data = &self.remaining_data[BYTES..];
                    } else {
                        // this is a continuation block. the first pattern chunk might still be in this data chunk
                        // only this chunk has failed, we need to restart pattern verification in this same block, just this time with the first chunk
                        self.remaining_data = &self.remaining_data[current_offset..];
                    }

                    continue 'main;
                }

                // if this is the first chunk, allow advancing to the next occurrence of the first byte and restart check
                if first_chunk && first_byte.trailing_zeros() != 0 {
                    self.remaining_data =
                        &self.remaining_data[first_byte.trailing_zeros() as usize..];
                    continue 'main;
                } else if first_byte.trailing_zeros() != 0 {
                    // not the first chunk, but we are not aligned to the first byte.
                    // this means we did not match.
                    // restart pattern verification from the current data chunk.
                    self.remaining_data = &self.remaining_data[current_offset..];
                    continue 'main;
                }

                // we are now aligned to the first byte of the chunk
                let search = Simd::from_slice(current_search);

                let result = search.simd_eq(chunk.bytes);

                // filtered result is smaller than the mask
                let filtered_result = result.bitand(chunk.mask);

                if filtered_result != chunk.mask {
                    // we did not match. restart pattern scan in one byte

                    // increase index by one to avoid scanning the same chunk again
                    self.remaining_data = &self.remaining_data[1..];

                    continue 'main;
                }

                // we matched. go on to next chunk. if all chunks do not restart the pattern scan, we will return a match

                first_chunk = false;
                current_search = &current_search[BYTES..];
                current_offset += BYTES;
            }

            let result = self.data.len() - self.remaining_data.len();

            self.remaining_data = &self.remaining_data[1..];

            return Some(result);
        }
    }
}

#[test]
fn test_scan_simple() {
    let mut buf = vec![0u8; 500];

    buf[6] = 0xDE;
    buf[7] = 0xAD;
    buf[8] = 0xBE;
    buf[9] = 0xEF;

    let pattern = pattern!(0xDE, 0xAD, 0xBE, 0xEF);
    let mut scanner = PatternSearcher::new(&buf, pattern);

    assert_eq!(scanner.next(), Some(6))
}

#[test]
fn test_scan_simd_fallback() {
    let mut buf = vec![0u8; 500];

    buf[496] = 0xDE;
    buf[497] = 0xAD;
    buf[498] = 0xBE;
    buf[499] = 0xEF;

    let pattern = pattern!(0xDE, 0xAD, 0xBE, 0xEF);
    let mut scanner = PatternSearcher::new(&buf, pattern);

    assert_eq!(scanner.next(), Some(496))
}

#[test]
fn test_scan_wildcard() {
    let mut buf = vec![0u8; 500];

    buf[6] = 0xDE;
    buf[7] = 0xAD;
    buf[9] = 0xBE;
    buf[10] = 0xEF;

    let pattern = pattern!(0xDE, 0xAD, _, 0xBE, 0xEF);
    let mut scanner = PatternSearcher::new(&buf, pattern);

    assert_eq!(scanner.next(), Some(6))
}

#[test]
fn test_scan_large_sig() {
    let mut buf = vec![0u8; 500];

    buf[5] = 0xDE;
    buf[6] = 0xAD;
    buf[8] = 0xBE;
    buf[9] = 0xEF;

    buf[10] = 0xDE;
    buf[11] = 0xAD;
    buf[13] = 0xBE;
    buf[14] = 0xEF;

    buf[15] = 0xDE;
    buf[16] = 0xAD;
    buf[18] = 0xBE;
    buf[19] = 0xEF;

    buf[20] = 0xDE;
    buf[21] = 0xAD;
    buf[23] = 0xBE;
    buf[24] = 0xEF;

    buf[25] = 0xDE;
    buf[26] = 0xAD;
    buf[28] = 0xBE;
    buf[29] = 0xEF;

    buf[30] = 0xDE;
    buf[31] = 0xAD;
    buf[33] = 0xBE;
    buf[34] = 0xEF;

    buf[35] = 0xDE;
    buf[36] = 0xAD;
    buf[38] = 0xBE;
    buf[39] = 0xEF;

    buf[40] = 0xDE;
    buf[41] = 0xAD;
    buf[43] = 0xBE;
    buf[44] = 0xEF;

    buf[45] = 0xDE;
    buf[46] = 0xAD;
    buf[48] = 0xBE;
    buf[49] = 0xEF;

    let pattern = pattern!(
        0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE,
        0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _,
        0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF, 0xDE, 0xAD, _, 0xBE, 0xEF
    );

    let mut scanner = PatternSearcher::new(&buf, pattern);

    assert_eq!(scanner.next(), Some(5))
}