1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#![allow(incomplete_features)]
#![cfg_attr(feature = "const", feature(generic_const_exprs))]
#![cfg_attr(feature = "const", feature(adt_const_params))]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]

/*!
A library that lets you validate the dimensions of your quantities at compile time and at runtime.

<div class="warning">WARNING: Uses the experimental features `generic_const_exprs` and `adt_const_params` which are known to cause bugs. Disable the `const` feature if you're only interested in runtime checking.</div>

## Compile time example

Okay

```rust
use const_units::si; // Parses units at compile time
use const_units::Quantity; // Represents a number with a dimension

// Input attometers, return square attometers
fn square_dist(
    x: Quantity<f64, { si("am") }>,
    y: Quantity<f64, { si("am") }>,
) -> Quantity<f64, { si("am^2") }> {
    x.powi::<2>() + y.powi::<2>()
}

// Input attometers, return meters
fn distance(
    x: Quantity<f64, { si("am") }>,
    y: Quantity<f64, { si("am") }>,
) -> Quantity<f64, { si("m") }> {
    square_dist(x, y)
        .powf::<{ (1, 2) }>() // `(1, 2)` represents 1/2
        .convert_to::<{ si("m") }>()
}

assert_eq!(
    distance(Quantity(3.), Quantity(4.)),
    Quantity(0.000_000_000_000_000_005)
);
```

Broken

```compile_fail
# use const_units::{Quantity, units::{meter, second, DIMENSIONLESS}};
fn sum(
    x: Quantity<f64, { meter }>,
    y: Quantity<f64, { second }>,
) -> Quantity<f64, DIMENSIONLESS> {
    x + y // You can't add meters and seconds
}
```

## Run time example

Requires the `dyn` feature

```rust
use const_units::si;
use const_units::DynQuantity; // A quantity with dynamic units stored at runtime alongside the number
use const_units::InconsistentUnits; // The error returned when inconsistent units are used together

fn distance(
    x: DynQuantity<f64>,
    y: DynQuantity<f64>,
) -> DynQuantity<f64> {
    // The addition operator will panic if the units are inconsistent
    (x.powi(2) + y.powi(2))
        .powf((1, 2))
        .convert_to(si("m"))
        .unwrap()
}

fn distance_checked(
    x: DynQuantity<f64>,
    y: DynQuantity<f64>,
) -> Result<DynQuantity<f64>, InconsistentUnits> {
    // You can use checked operators to avoid panicking
    x.powi(2)
        .checked_add(y.powi(2))?
        .powf((1, 2))
        .convert_to(si("m"))
}

assert_eq!(
    distance_checked(DynQuantity(3., si("am")), DynQuantity(4., si("am"))),
    Ok(DynQuantity(0.000_000_000_000_000_005, si("m"))),
);
assert_eq!(
    distance_checked(DynQuantity(3., si("m")), DynQuantity(4., si("m"))),
    Ok(DynQuantity(5., si("m"))),
);
assert!(distance_checked(DynQuantity(3., si("m")), DynQuantity(4., si("s"))).is_err());
```

## no-std

The `std` feature can be disabled to allow the crate to function in no-std environments. Doing so will remove methods to convert quantities directly to strings and prevent errors from implementing `std::error::Error`.
*/
use core::fmt::Display;

use units::DIMENSIONLESS;

mod parsing;
pub mod prefixes;
pub mod units;

pub use parsing::*;

#[cfg(feature = "const")]
mod quantity;
#[cfg(feature = "const")]
pub use quantity::*;

#[cfg(feature = "dyn")]
mod dyn_quantity;
#[cfg(feature = "dyn")]
pub use dyn_quantity::*;

// https://stackoverflow.com/questions/7407752/integer-nth-root
const fn try_root(v: u128, n: u32) -> Option<u128> {
    // (2..128).map(|v| (u128::MAX as f64).powf(1. / v as f64).ceil() as u128).collect::<Vec<_>>()
    #[rustfmt::skip]
    const MAX_VALS: [u128; 126] = [18446744073709551616, 6981463658332, 4294967296, 50859009, 2642246, 319558, 65536, 19113, 7132, 3184, 1626, 921, 566, 371, 256, 185, 139, 107, 85, 69, 57, 48, 41, 35, 31, 27, 24, 22, 20, 18, 16, 15, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3];

    if n == 1 {
        return Some(v);
    }

    if n == 0 {
        return Some(1);
    }

    if v == 0 || v == 1 {
        return Some(v);
    }

    if n > (MAX_VALS.len() + 1) as u32 {
        return None;
    }

    // Can't shadow constant `min`
    let mut minimum = 2;
    let mut max = MAX_VALS[n as usize - 2];

    loop {
        let mid = (minimum + max) >> 1;

        let res = mid.pow(n);

        if res > v {
            max = mid;
        } else if res < v {
            minimum = mid + 1;
        } else {
            return Some(mid);
        }

        if minimum == max {
            return None;
        }
    }
}

const fn add(lhs: (i32, u32), rhs: (i32, u32)) -> (i32, u32) {
    simplify((
        lhs.0 * (rhs.1 as i32) + rhs.0 * (lhs.1 as i32),
        lhs.1 * rhs.1,
    ))
}

const fn sub(lhs: (i32, u32), mut rhs: (i32, u32)) -> (i32, u32) {
    rhs.0 = -rhs.0;

    add(lhs, rhs)
}

const fn recip(f: (i128, u128)) -> (i128, u128) {
    simplify_big((f.1 as i128 * f.0.signum(), f.0.unsigned_abs()))
}

const fn mul(lhs: (i128, u128), rhs: (i128, u128)) -> (i128, u128) {
    simplify_big((lhs.0 * rhs.0, lhs.1 * rhs.1))
}

const fn div(lhs: (i128, u128), rhs: (i128, u128)) -> (i128, u128) {
    mul(lhs, recip(rhs))
}

const fn gcd(a: u32, b: u32) -> u32 {
    if b == 0 {
        a
    } else {
        gcd(b, a % b)
    }
}

const fn gcd_big(a: u128, b: u128) -> u128 {
    if b == 0 {
        a
    } else {
        gcd_big(b, a % b)
    }
}

/// Simplify a fraction that uses 32 bit numbers
pub const fn simplify(v: (i32, u32)) -> (i32, u32) {
    let scale_down = gcd(v.0.unsigned_abs(), v.1);

    (v.0 / (scale_down as i32), v.1 / scale_down)
}

/// Simplify a fraction that uses 128 bit numbers
pub const fn simplify_big(v: (i128, u128)) -> (i128, u128) {
    let scale_down = gcd_big(v.0.unsigned_abs(), v.1);

    (v.0 / (scale_down as i128), v.1 / scale_down)
}

/// Represents SI units
///
/// Each field contains the exponent of the corresponding dimension. Exponents are fractions where the first element of the tuple is the numerator and the second is the denominator. Ensure the fractions are fully simplified if you're creating an instance directly.
#[allow(non_snake_case)]
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub struct SI {
    /// A scale factor - used for units that are constant multiples of other units; ie. minutes or kilometers
    pub scale: (i128, u128),
    /// Seconds
    pub s: (i32, u32),
    /// Meters
    pub m: (i32, u32),
    /// Kilograms
    pub kg: (i32, u32),
    /// Amperes
    pub A: (i32, u32),
    /// Kelvin
    pub K: (i32, u32),
    /// Moles
    pub mol: (i32, u32),
    /// Candelas
    pub cd: (i32, u32),
}

impl Display for SI {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let mut not_first = false;

        if self.scale.0 != 1
            || self.scale.1 != 1
            || (*self).scale_by(recip(self.scale)) == DIMENSIONLESS
        {
            f.write_str("(")?;
            self.scale.0.fmt(f)?;

            if self.scale.1 != 1 {
                f.write_str("/")?;
                self.scale.1.fmt(f)?;
            }

            f.write_str(")")?;

            not_first = true;
        }

        macro_rules! unit {
            ($name: tt, $signum: expr) => {
                #[allow(unused_assignments)]
                // Implicitly checks for zero too
                if self.$name.0.signum() == $signum {
                    if not_first {
                        f.write_str("⋅")?;
                    }

                    f.write_str(stringify!($name))?;

                    if self.$name.0 != 1 || self.$name.1 != 1 {
                        f.write_str("^")?;
                        self.$name.0.fmt(f)?;

                        if self.$name.1 != 1 {
                            f.write_str("/")?;
                            self.$name.1.fmt(f)?;
                        }
                    }

                    not_first = true;
                }
            };
        }

        // Ensure negative powers come after positive ones

        unit!(s, 1);
        unit!(m, 1);
        unit!(kg, 1);
        unit!(A, 1);
        unit!(K, 1);
        unit!(mol, 1);
        unit!(cd, 1);

        unit!(s, -1);
        unit!(m, -1);
        unit!(kg, -1);
        unit!(A, -1);
        unit!(K, -1);
        unit!(mol, -1);
        unit!(cd, -1);

        Ok(())
    }
}

impl SI {
    /// Multiply the scale factor by a given constant
    ///
    /// ```
    /// # use const_units::units::{second, minute};
    /// assert_eq!(second.scale_by((60, 1)), minute)
    /// ```
    pub const fn scale_by(mut self, scale: (i128, u128)) -> Self {
        self.scale = mul(scale, self.scale);
        self
    }

    /// Multiply SI units
    ///
    /// ```
    /// # use const_units::units::{newton, meter, joule};
    /// assert_eq!(newton.mul(meter), joule)
    /// ```
    pub const fn mul(self, rhs: Self) -> Self {
        SI {
            scale: mul(self.scale, rhs.scale),
            s: add(self.s, rhs.s),
            m: add(self.m, rhs.m),
            kg: add(self.kg, rhs.kg),
            A: add(self.A, rhs.A),
            K: add(self.K, rhs.K),
            mol: add(self.mol, rhs.mol),
            cd: add(self.cd, rhs.cd),
        }
    }

    /// Divide SI units
    ///
    /// ```
    /// # use const_units::units::{joule, second, watt};
    /// assert_eq!(joule.div(second), watt);
    /// ```
    pub const fn div(self, rhs: Self) -> Self {
        SI {
            scale: div(self.scale, rhs.scale),
            s: sub(self.s, rhs.s),
            m: sub(self.m, rhs.m),
            kg: sub(self.kg, rhs.kg),
            A: sub(self.A, rhs.A),
            K: sub(self.K, rhs.K),
            mol: sub(self.mol, rhs.mol),
            cd: sub(self.cd, rhs.cd),
        }
    }

    /// Raise SI units to an integer power
    ///
    /// ```
    /// # use const_units::units::{second, hertz};
    /// assert_eq!(second.powi(-1), hertz);
    /// ```
    pub const fn powi(self, v: i32) -> Self {
        self.powf((v, 1))
    }

    /// Raise SI units to a fractional power
    ///
    /// ```
    /// # use const_units::units::{meter};
    /// assert_eq!(meter.powi(2).powf((1, 2)), meter);
    /// ```
    ///
    /// # Panics
    /// Panics if `scale` can't be raised to the given power without losing precision
    ///
    /// ```should_panic
    /// # use const_units::units::{meter};
    /// meter.scale_by((2, 1)).powf((1, 2)); // `2` isn't a square number
    /// ```
    pub const fn powf(self, v: (i32, u32)) -> Self {
        match self.checked_powf(v) {
            Some(v) => v,
            None => panic!("Scale can't be raised to the given power without losing precision"),
        }
    }

    /// A checked version of `pow`
    ///
    /// ```
    /// # use const_units::units::{meter};
    /// assert_eq!(meter.powi(2).checked_powf((1, 2)), Some(meter));
    /// assert_eq!(meter.scale_by((2, 1)).checked_powf((1, 2)), None);
    /// ```
    pub const fn checked_powf(self, mut v: (i32, u32)) -> Option<Self> {
        v = simplify(v);
        let mut scale = self.scale;

        // `Try` isn't allowed in const
        scale.0 = match try_root(scale.0.unsigned_abs(), v.1) {
            Some(v) => v as i128 * scale.0.signum(),
            None => return None,
        };
        scale.1 = match try_root(scale.1, v.1) {
            Some(v) => v,
            None => return None,
        };

        if v.0.signum() == -1 {
            scale = recip(scale);
        }

        scale.0 = scale.0.pow(v.0.unsigned_abs());
        scale.1 = scale.1.pow(v.0.unsigned_abs());

        Some(SI {
            scale,
            s: simplify((self.s.0 * v.0, self.s.1 * v.1)),
            m: simplify((self.m.0 * v.0, self.m.1 * v.1)),
            kg: simplify((self.kg.0 * v.0, self.kg.1 * v.1)),
            A: simplify((self.A.0 * v.0, self.A.1 * v.1)),
            K: simplify((self.K.0 * v.0, self.K.1 * v.1)),
            mol: simplify((self.mol.0 * v.0, self.mol.1 * v.1)),
            cd: simplify((self.cd.0 * v.0, self.cd.1 * v.1)),
        })
    }

    /// Compare units in constant functions
    pub const fn const_eq(self, other: SI) -> bool {
        self.scale.0 == other.scale.0 && self.scale.1 == other.scale.1 && self.same_dimension(other)
    }

    /// Determine whether two units measure the same dimension
    ///
    /// ```
    /// use const_units::si;
    /// assert!(si("min").same_dimension(si("s")));
    /// assert!(!si("cd").same_dimension(si("s")));
    /// ```
    pub const fn same_dimension(self, other: SI) -> bool {
        self.s.0 == other.s.0
            && self.s.1 == other.s.1
            && self.m.0 == other.m.0
            && self.m.1 == other.m.1
            && self.kg.0 == other.kg.0
            && self.kg.1 == other.kg.1
            && self.A.0 == other.A.0
            && self.A.1 == other.A.1
            && self.K.0 == other.K.0
            && self.K.1 == other.K.1
            && self.mol.0 == other.mol.0
            && self.mol.1 == other.mol.1
            && self.cd.0 == other.cd.0
            && self.cd.1 == other.cd.1
    }
}

#[cfg(test)]
mod tests {
    use crate::{add, gcd, mul, recip, simplify, sub, try_root};

    #[test]
    fn fractional_add() {
        assert_eq!(add((1, 2), (1, 3)), (5, 6));
        assert_eq!(add((1, 2), (-1, 3)), (1, 6));
        assert_eq!(add((-1, 2), (-1, 3)), (-5, 6));
        assert_eq!(add((-2, 2), (-1, 3)), (-4, 3));
        assert_eq!(add((2, 2), (3, 3)), (2, 1));
    }

    #[test]
    fn fractional_sub() {
        assert_eq!(sub((1, 2), (1, 3)), (1, 6));
        assert_eq!(sub((1, 2), (-1, 3)), (5, 6));
        assert_eq!(sub((-1, 2), (-1, 3)), (-1, 6));
        assert_eq!(sub((-2, 2), (-1, 3)), (-2, 3));
        assert_eq!(sub((2, 2), (3, 3)), (0, 1));
    }

    #[test]
    fn fractional_mul() {
        assert_eq!(mul((1, 2), (1, 3)), (1, 6));
        assert_eq!(mul((1, 2), (-1, 3)), (-1, 6));
        assert_eq!(mul((-1, 2), (-1, 3)), (1, 6));
        assert_eq!(mul((-2, 2), (-1, 3)), (1, 3));
        assert_eq!(mul((2, 2), (3, 3)), (1, 1));
        assert_eq!(mul((60, 1), (1, 60)), (1, 1));
    }

    #[test]
    fn test_gcd() {
        assert_eq!(gcd(2, 2), 2);
        assert_eq!(gcd(2, 3), 1);
        assert_eq!(gcd(2, 4), 2);
        assert_eq!(gcd(4, 3), 1);
        assert_eq!(gcd(4, 2), 2);
    }

    #[test]
    fn test_recip() {
        assert_eq!(recip((1, 2)), (2, 1));
        assert_eq!(recip((2, 2)), (1, 1));
        assert_eq!(recip((-1, 2)), (-2, 1));
        assert_eq!(recip((-2, 1)), (-1, 2));
    }

    #[test]
    fn test_simplify() {
        assert_eq!(simplify((5, 6)), (5, 6));
        assert_eq!(simplify((-5, 6)), (-5, 6));
        assert_eq!(simplify((-4, 6)), (-2, 3));
        assert_eq!(simplify((-2, 1)), (-2, 1));
        assert_eq!(simplify((4, 6)), (2, 3));
    }

    #[test]
    fn test_root() {
        assert_eq!(try_root(9, 2), Some(3));
        assert_eq!(try_root(27, 3), Some(3));
        assert_eq!(try_root(28, 3), None);
        assert_eq!(try_root(28, 39), None);
        assert_eq!(try_root(1, 39), Some(1));
        assert_eq!(try_root(28, 0), Some(1));
        assert_eq!(try_root(0, 1), Some(0));
    }
}