1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#![doc = include_str!("../README.md")]
#![allow(clippy::comparison_chain)]
#![allow(clippy::len_without_is_empty)]
#![cfg_attr(doc_cfg, feature(doc_cfg))]
#![feature(slice_ptr_get)]
#![feature(allocator_api)]

mod base_node;
mod error;
mod key;
mod lock;
mod node_16;
mod node_256;
mod node_4;
mod node_48;
mod node_ptr;
mod tree;
mod utils;

mod node_lock;

mod range_scan;

#[cfg(feature = "stats")]
mod stats;

#[cfg(test)]
mod tests;

use std::alloc::AllocError;
use std::alloc::Allocator;
use std::marker::PhantomData;

use error::OOMError;
use key::RawKey;
use key::UsizeKey;
use tree::RawTree;

/// Types needed to safely access shared data concurrently.
pub mod epoch {
    pub use crossbeam_epoch::{pin, Guard};
}

#[derive(Clone)]
pub struct DefaultAllocator {}

unsafe impl Send for DefaultAllocator {}
unsafe impl Sync for DefaultAllocator {}

unsafe impl Allocator for DefaultAllocator {
    fn allocate(&self, layout: std::alloc::Layout) -> Result<std::ptr::NonNull<[u8]>, AllocError> {
        let ptr = unsafe { std::alloc::alloc(layout) };
        let ptr_slice = std::ptr::slice_from_raw_parts_mut(ptr, layout.size());
        Ok(std::ptr::NonNull::new(ptr_slice).unwrap())
    }

    unsafe fn deallocate(&self, ptr: std::ptr::NonNull<u8>, layout: std::alloc::Layout) {
        std::alloc::dealloc(ptr.as_ptr(), layout);
    }
}

/// The adaptive radix tree.
/// Currently we only support only one type of memory, the allocator must return the type of memory requested.
pub struct Art<
    K: Clone + From<usize>,
    V: Clone + From<usize>,
    A: Allocator + Clone + 'static = DefaultAllocator,
> where
    usize: From<K>,
    usize: From<V>,
{
    inner: RawTree<UsizeKey, A>,
    pt_key: PhantomData<K>,
    pt_val: PhantomData<V>,
}

impl<K: Clone + From<usize>, V: Clone + From<usize>> Default for Art<K, V>
where
    usize: From<K>,
    usize: From<V>,
{
    fn default() -> Self {
        Self::new(DefaultAllocator {})
    }
}

impl<K: Clone + From<usize>, V: Clone + From<usize>, A: Allocator + Clone + Send> Art<K, V, A>
where
    usize: From<K>,
    usize: From<V>,
{
    /// Returns a copy of the value corresponding to the key.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    /// assert_eq!(tree.get(&1, &guard).unwrap(), 42);
    /// ```
    #[inline]
    pub fn get(&self, key: &K, guard: &epoch::Guard) -> Option<V> {
        let key = UsizeKey::key_from(usize::from(key.clone()));
        let v = self.inner.get(&key, guard)?;
        Some(V::from(v))
    }

    /// Enters an epoch.
    /// Note: this can be expensive, try to reuse it.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::<usize, usize>::default();
    /// let guard = tree.pin();
    /// ```
    #[inline]
    pub fn pin(&self) -> epoch::Guard {
        crossbeam_epoch::pin()
    }

    /// Create an empty [Art] tree.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::<usize, usize>::default();
    /// ```
    #[inline]
    pub fn new(allocator: A) -> Self {
        Art {
            inner: RawTree::new(allocator),
            pt_key: PhantomData,
            pt_val: PhantomData,
        }
    }

    /// Removes key-value pair from the tree, returns the value if the key was found.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    /// let removed = tree.remove(&1, &guard);
    /// assert_eq!(removed, Some(42));
    /// assert!(tree.get(&1, &guard).is_none());
    /// ```
    #[inline]
    pub fn remove(&self, k: &K, guard: &epoch::Guard) -> Option<V> {
        let key = UsizeKey::key_from(usize::from(k.clone()));
        let (old, new) = self.inner.compute_if_present(&key, &mut |_v| None, guard)?;
        debug_assert!(new.is_none());
        Some(V::from(old))
    }

    /// Insert a key-value pair to the tree, returns the previous value if the key was already present.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    /// assert_eq!(tree.get(&1, &guard).unwrap(), 42);
    /// let old = tree.insert(1, 43, &guard).unwrap();
    /// assert_eq!(old, Some(42));
    /// ```
    #[inline]
    pub fn insert(&self, k: K, v: V, guard: &epoch::Guard) -> Result<Option<V>, OOMError> {
        let key = UsizeKey::key_from(usize::from(k));
        let val = self.inner.insert(key, usize::from(v), guard);
        val.map(|inner| inner.map(|v| V::from(v)))
    }

    /// Scan the tree with the range of [start, end], write the result to the
    /// `result` buffer.
    /// It scans the length of `result` or the number of the keys within the range, whichever is smaller;
    /// returns the number of the keys scanned.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    ///
    /// let low_key = 1;
    /// let high_key = 2;
    /// let mut result = [(0, 0); 2];
    /// let scanned = tree.range(&low_key, &high_key, &mut result, &guard);
    /// assert_eq!(scanned, 1);
    /// assert_eq!(result, [(1, 42), (0, 0)]);
    /// ```
    #[inline]
    pub fn range(
        &self,
        start: &K,
        end: &K,
        result: &mut [(usize, usize)],
        guard: &epoch::Guard,
    ) -> usize {
        let start = UsizeKey::key_from(usize::from(start.clone()));
        let end = UsizeKey::key_from(usize::from(end.clone()));
        self.inner.range(&start, &end, result, guard)
    }

    /// Compute and update the value if the key presents in the tree.
    /// Returns the (old, new) value
    ///
    /// Note that the function `f` is a FnMut and it must be safe to execute multiple times.
    /// The `f` is expected to be short and fast as it will hold a exclusive lock on the leaf node.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    /// let old = tree.compute_if_present(&1, |v| Some(v+1), &guard).unwrap();
    /// assert_eq!(old, (42, Some(43)));
    /// let val = tree.get(&1, &guard).unwrap();
    /// assert_eq!(val, 43);
    /// ```
    #[inline]
    pub fn compute_if_present<F>(
        &self,
        key: &K,
        mut f: F,
        guard: &epoch::Guard,
    ) -> Option<(usize, Option<usize>)>
    where
        F: FnMut(usize) -> Option<usize>,
    {
        let u_key = UsizeKey::key_from(usize::from(key.clone()));

        self.inner.compute_if_present(&u_key, &mut f, guard)
    }

    /// Compute or insert the value if the key is not in the tree.
    /// Returns the Option(old) value
    ///
    /// Note that the function `f` is a FnMut and it must be safe to execute multiple times.
    /// The `f` is expected to be short and fast as it will hold a exclusive lock on the leaf node.
    ///
    /// # Examples
    ///
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    ///
    /// tree.insert(1, 42, &guard);
    /// let old = tree.compute_or_insert(1, |v| v.unwrap() + 1, &guard).unwrap().unwrap();
    /// assert_eq!(old, 42);
    /// let val = tree.get(&1, &guard).unwrap();
    /// assert_eq!(val, 43);
    ///
    /// let old = tree.compute_or_insert(2, |v| {
    ///     assert!(v.is_none());
    ///     2
    /// }, &guard).unwrap();
    /// assert!(old.is_none());
    /// let val = tree.get(&2, &guard).unwrap();
    /// assert_eq!(val, 2);
    /// ```
    pub fn compute_or_insert<F>(
        &self,
        key: K,
        mut f: F,
        guard: &epoch::Guard,
    ) -> Result<Option<V>, OOMError>
    where
        F: FnMut(Option<usize>) -> usize,
    {
        let u_key = UsizeKey::key_from(usize::from(key));
        let u_val = self.inner.compute_or_insert(u_key, &mut f, guard)?;
        Ok(u_val.map(|v| V::from(v)))
    }

    /// Display the internal node statistics
    #[cfg(feature = "stats")]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "stats")))]
    pub fn stats(&self) -> stats::NodeStats {
        self.inner.stats()
    }

    /// Get a random value from the tree, perform the transformation `f`.
    /// This is useful for randomized algorithms.
    ///
    /// `f` takes key and value as input and return the new value, |key: usize, value: usize| -> usize.
    ///
    /// Returns (key, old_value, new_value)
    ///
    /// Note that the function `f` is a FnMut and it must be safe to execute multiple times.
    /// The `f` is expected to be short and fast as it will hold a exclusive lock on the leaf node.
    ///
    /// # Examples:
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    /// tree.insert(1, 42, &guard);
    /// let mut rng = rand::thread_rng();
    /// let (key, old_v, new_v) = tree.compute_on_random(&mut rng, |k, v| {
    ///     assert_eq!(k, 1);
    ///     assert_eq!(v, 42);
    ///     v + 1
    /// }, &guard).unwrap();
    /// assert_eq!(key, 1);
    /// assert_eq!(old_v, 42);
    /// assert_eq!(new_v, 43);
    /// ```
    #[cfg(feature = "db_extension")]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "db_extension")))]
    pub fn compute_on_random(
        &self,
        rng: &mut impl rand::Rng,
        mut f: impl FnMut(K, V) -> V,
        guard: &epoch::Guard,
    ) -> Option<(K, V, V)> {
        let mut remapped = |key: usize, value: usize| -> usize {
            let v = f(K::from(key), V::from(value));
            usize::from(v)
        };
        let (key, old_v, new_v) = self.inner.compute_on_random(rng, &mut remapped, guard)?;
        Some((K::from(key), V::from(old_v), V::from(new_v)))
    }

    /// Update the value if the old value matches with the new one.
    /// Returns the current value.
    ///
    /// # Examples:
    /// ```
    /// use congee::Art;
    /// let tree = Art::default();
    /// let guard = tree.pin();
    /// tree.insert(1, 42, &guard);
    ///
    ///
    /// let v = tree.compare_exchange(&1, &42, Some(43), &guard).unwrap();
    /// assert_eq!(v, Some(43));
    /// ```
    pub fn compare_exchange(
        &self,
        key: &K,
        old: &V,
        new: Option<V>,
        guard: &epoch::Guard,
    ) -> Result<Option<V>, Option<V>> {
        let u_key = UsizeKey::key_from(usize::from(key.clone()));
        let new_v = new.clone().map(|v| usize::from(v));
        let mut fc = |v: usize| -> Option<usize> {
            if v == usize::from(old.clone()) {
                new_v
            } else {
                Some(v)
            }
        };
        let v = self.inner.compute_if_present(&u_key, &mut fc, guard);
        match v {
            Some((actual_old, actual_new)) => {
                if actual_old == usize::from(old.clone()) && actual_new == new_v {
                    Ok(new)
                } else {
                    Err(actual_new.map(|v| V::from(v)))
                }
            }
            None => Err(None),
        }
    }
}