concordium_base 9.0.0

A library that defines common types and functionality that are needed by Concordium Rust projects.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//! The module provides the implementation of the `Vcom-com-eq` sigma
//! protocol (cf. "Proof of Equality for Vector Pedersen Commitment and Pedersen Commitments" Section 9.7.1, Bluepaper v1.2.5). This protocol enables one to
//! prove knowledge of $x_1, ..., x_n, r, (r_i)_{i\in I}$ such that $ C = h^r
//! \prod_{i=1}^n g_i^{x_i}$ and $C_i = \bar{g}^{x_i} \bar{h}^{r_i}$ for $i\in
//! I$.
use super::common::*;
use crate::{
    common::*,
    curve_arithmetic::{multiexp, Curve, Field},
    pedersen_commitment::{Commitment, Value},
    random_oracle::{Challenge, RandomOracle},
};
use itertools::izip;
use std::collections::BTreeMap;

type IndexType = u8;

/// The public information known to both the prover and the verifier.
#[derive(Debug, Clone, Serialize)]
pub struct VecComEq<C: Curve> {
    /// The commitment C
    pub comm: Commitment<C>,
    /// The commitments C_i for i in I
    #[map_size_length = 2]
    pub comms: BTreeMap<IndexType, Commitment<C>>,
    /// The points `g_i` references in the module description, in the given
    /// order. It is assumed that this is non-empty.
    /// TODO: It would be better if this gis was also an indexed map.
    #[size_length = 2]
    pub gis: Vec<C>,
    /// The generator h
    pub h: C,
    /// The generator `\bar{g}`
    pub g_bar: C,
    /// The generator `\bar{h}`
    pub h_bar: C,
}

/// Response for `VecComEq` proof. We deliberately make it opaque.
#[derive(Clone, Debug, Serialize)]
pub struct Response<C: Curve> {
    #[size_length = 2]
    sis: Vec<C::Scalar>,
    t: C::Scalar,
    #[map_size_length = 2]
    tis: BTreeMap<IndexType, C::Scalar>,
}

/// Convenient alias
pub type Proof<C> = SigmaProof<Response<C>>;

impl<C: Curve> SigmaProtocol for VecComEq<C> {
    type CommitMessage = (C, Vec<C>);
    type ProtocolChallenge = C::Scalar;
    type ProverState = (Vec<C::Scalar>, C::Scalar, BTreeMap<IndexType, C::Scalar>);
    type Response = Response<C>;
    type SecretData = (Vec<C::Scalar>, Value<C>, BTreeMap<IndexType, Value<C>>);

    fn public(&self, ro: &mut RandomOracle) {
        ro.append_message(b"C", &self.comm);
        ro.append_message(b"Cis", &self.comms);
        ro.extend_from(b"gis", &self.gis);
        ro.append_message(b"h", &self.h);
        ro.append_message("h_bar", &self.h_bar);
        ro.append_message("g_bar", &self.g_bar)
    }

    fn compute_commit_message<R: rand::Rng>(
        &self,
        csprng: &mut R,
    ) -> Option<(Self::CommitMessage, Self::ProverState)> {
        let n = self.gis.len();
        let rtilde = C::generate_non_zero_scalar(csprng);
        let mut alphas = Vec::with_capacity(n);
        let mut rtildes = BTreeMap::new();
        let mut ais = Vec::with_capacity(self.comms.len());
        for i_usize in 0..n {
            let i = i_usize.try_into().ok()?;
            let alpha_i = C::generate_non_zero_scalar(csprng);
            alphas.push(alpha_i);
            if self.comms.contains_key(&i) {
                let rtilde_i = C::generate_non_zero_scalar(csprng);
                rtildes.insert(i, rtilde_i);
                let ai = multiexp(&[self.g_bar, self.h_bar], &[alpha_i, rtilde_i]);
                ais.push(ai);
            }
        }
        // for the factor h^{r_tilde}
        alphas.push(rtilde);
        let mut gis = self.gis.clone();
        gis.push(self.h);
        let a = multiexp(&gis, &alphas); // h^rtilde \prod g_i^(alpha_i)
        alphas.pop(); // remove rtilde from alphas again.
        Some(((a, ais), (alphas, rtilde, rtildes)))
    }

    fn get_challenge(&self, challenge: &Challenge) -> Self::ProtocolChallenge {
        C::scalar_from_bytes(challenge)
    }

    fn compute_response(
        &self,
        secret: Self::SecretData,
        state: Self::ProverState,
        challenge: &Self::ProtocolChallenge,
    ) -> Option<Self::Response> {
        let (alphas, rtilde, rtildes) = state;
        let (xis, r, ris) = secret;
        let n = xis.len();
        if alphas.len() != n || rtildes.len() != ris.len() || ris.len() != self.comms.len() {
            return None;
        }
        let mut sis = Vec::with_capacity(n);
        let mut tis = BTreeMap::new();
        for (i_usize, (ref alpha_i, ref xi)) in izip!(alphas, xis).enumerate() {
            let mut si = *challenge;
            si.mul_assign(xi);
            si.negate();
            si.add_assign(alpha_i);
            sis.push(si);
            let i = i_usize.try_into().ok()?;
            if let (Some(rtilde_i), Some(ri)) = (rtildes.get(&i), ris.get(&i)) {
                let mut ti = *challenge;
                ti.mul_assign(ri);
                ti.negate();
                ti.add_assign(rtilde_i);
                tis.insert(i, ti);
            }
        }
        let mut t = *challenge;
        t.mul_assign(&r);
        t.negate();
        t.add_assign(&rtilde);
        Some(Response { sis, t, tis })
    }

    fn extract_commit_message(
        &self,
        challenge: &Self::ProtocolChallenge,
        response: &Self::Response,
    ) -> Option<Self::CommitMessage> {
        let Response { sis, t, tis } = response;
        if sis.is_empty() {
            return None;
        }
        // The below subtraction is fine, since we know `sis.len() >= 1`.
        let maybe_fit: Result<IndexType, _> = (sis.len() - 1).try_into();
        if sis.len() != self.gis.len()
            || tis.len() != self.comms.len()
            || tis.len() > sis.len()
            || maybe_fit.is_err()
        {
            return None;
        }
        let mut points = Vec::with_capacity(self.comms.len());

        let mut scalars = sis.clone();
        scalars.push(*t);
        scalars.push(*challenge);
        let mut bases = self.gis.clone();
        bases.push(self.h);
        bases.push(self.comm.0);

        let point = multiexp(&bases, &scalars); //  h^t C^challenge \prod g_i^(s_i)

        for (i_usize, si) in sis.iter().enumerate() {
            let i = i_usize.try_into().ok()?;
            if let (Some(comm_i), Some(ti)) = (self.comms.get(&i), tis.get(&i)) {
                let ai_scalars = vec![*si, *ti, *challenge];
                let ai_bases = vec![self.g_bar, self.h_bar, comm_i.0];
                let ai = multiexp(&ai_bases, &ai_scalars); // g_bar^{s_i}h_bar^{t_i} C_i^challenge
                points.push(ai);
            }
        }
        Some((point, points))
    }

    #[cfg(test)]
    fn with_valid_data<R: rand::Rng>(
        data_size: usize,
        csprng: &mut R,
        f: impl FnOnce(Self, Self::SecretData, &mut R),
    ) {
        let mut xis = Vec::with_capacity(data_size);
        let mut ris = BTreeMap::new();
        let mut gis = Vec::with_capacity(data_size);
        let mut comms = BTreeMap::new();
        let h = C::generate(csprng);
        let g_bar = C::generate(csprng);
        let h_bar = C::generate(csprng);
        let r = Value::new(C::generate_scalar(csprng));
        let mut comm = h.mul_by_scalar(&r);
        let mut i = 0;
        for _ in 0..data_size {
            let xi = C::generate_scalar(csprng);
            let ri = C::generate_scalar(csprng);
            let gi = C::generate(csprng);
            comm = comm.plus_point(&gi.mul_by_scalar(&xi));
            xis.push(xi);
            ris.insert(i, Value::new(ri));
            gis.push(gi);
            let comm_i = g_bar
                .mul_by_scalar(&xi)
                .plus_point(&h_bar.mul_by_scalar(&ri));
            comms.insert(i, Commitment(comm_i));
            i += 1;
        }
        let agg = VecComEq {
            comm: Commitment(comm),
            comms,
            h,
            g_bar,
            h_bar,
            gis,
        };
        let secret = (xis, r, ris);
        f(agg, secret, csprng)
    }
}

#[cfg(test)]
mod tests {
    use crate::curve_arithmetic::arkworks_instances::ArkGroup;

    use super::*;
    use ark_bls12_381::G1Projective;
    use rand::{thread_rng, Rng};

    type G1 = ArkGroup<G1Projective>;

    #[test]
    pub fn test_vcom_eq_correctness() {
        let mut csprng = thread_rng();
        for i in 1..20 {
            VecComEq::with_valid_data(i, &mut csprng, |agg: VecComEq<G1>, secret, csprng| {
                let challenge_prefix = generate_challenge_prefix(csprng);
                let mut ro = RandomOracle::domain(challenge_prefix);
                let proof =
                    prove(&mut ro.split(), &agg, secret, csprng).expect("Input data is valid.");
                assert!(verify(&mut ro, &agg, &proof));
            })
        }
    }

    #[test]
    pub fn test_vcom_correctness_with_setup() {
        let csprng = &mut thread_rng();
        let data_size = 256;
        let mut xis = Vec::with_capacity(data_size);
        let mut ris = BTreeMap::new();
        let mut gis = Vec::with_capacity(data_size);
        let mut comms = BTreeMap::new();
        let h = G1::generate(csprng);
        let g_bar = G1::generate(csprng);
        let h_bar = G1::generate(csprng);
        let r = Value::new(G1::generate_scalar(csprng));
        let mut comm = h.mul_by_scalar(&r);
        for i in 0..data_size {
            let xi = G1::generate_scalar(csprng);
            let gi = G1::generate(csprng);
            comm = comm.plus_point(&gi.mul_by_scalar(&xi));
            xis.push(xi);
            gis.push(gi);
            if i >= 5 && i <= 10 {
                let i_u8 = i.try_into().unwrap(); // This if fine since `i` is small.
                let ri = G1::generate_scalar(csprng);
                ris.insert(i_u8, Value::new(ri));
                let comm_i = g_bar
                    .mul_by_scalar(&xi)
                    .plus_point(&h_bar.mul_by_scalar(&ri));
                comms.insert(i_u8, Commitment(comm_i));
            }
        }
        let agg = VecComEq {
            comm: Commitment(comm),
            comms,
            h,
            g_bar,
            h_bar,
            gis,
        };
        let secret = (xis, r, ris);
        let challenge_prefix = generate_challenge_prefix(csprng);
        let mut ro = RandomOracle::domain(challenge_prefix);
        let proof = prove(&mut ro.split(), &agg, secret, csprng).expect("Input data is valid.");
        assert!(verify(&mut ro, &agg, &proof));
    }

    #[test]
    pub fn test_vcom_soundness_with_setup() {
        let csprng = &mut thread_rng();
        let data_size = 10;
        let mut xis = Vec::with_capacity(data_size);
        let mut ris = BTreeMap::new();
        let mut gis = Vec::with_capacity(data_size);
        let mut comms = BTreeMap::new();
        let h = G1::generate(csprng);
        let g_bar = G1::generate(csprng);
        let h_bar = G1::generate(csprng);
        let r = Value::new(G1::generate_scalar(csprng));
        let mut comm = h.mul_by_scalar(&r);
        let mut i = 0;
        for _ in 0..data_size {
            let xi = G1::generate_scalar(csprng);
            let gi = G1::generate(csprng);
            comm = comm.plus_point(&gi.mul_by_scalar(&xi));
            xis.push(xi);
            gis.push(gi);
            if i <= 5 {
                let ri = G1::generate_scalar(csprng);
                ris.insert(i, Value::new(ri));
                let comm_i = g_bar
                    .mul_by_scalar(&xi)
                    .plus_point(&h_bar.mul_by_scalar(&ri));
                comms.insert(i, Commitment(comm_i));
            }
            i += 1;
        }
        let wrong_comm = Commitment::generate(csprng);
        let index_wrong_comm: IndexType = csprng.gen_range(0..6);
        let index_wrong_gi: usize = csprng.gen_range(0..10);
        let mut wrong_comms = comms.clone();
        wrong_comms.insert(index_wrong_comm, wrong_comm);
        let mut wrong_gis = gis.clone();
        wrong_gis[index_wrong_gi] = wrong_comm.0;

        let comm = Commitment(comm);

        let vcom_wrong_comm = VecComEq {
            comm: wrong_comm,
            comms: comms.clone(),
            h,
            g_bar,
            h_bar,
            gis: gis.clone(),
        };
        let vcom_wrong_comms = VecComEq {
            comms: wrong_comms,
            comm,
            h,
            g_bar,
            h_bar,
            gis: gis.clone(),
        };
        let vcom_wrong_gis = VecComEq {
            comms: comms.clone(),
            comm,
            h,
            g_bar,
            h_bar,
            gis: wrong_gis,
        };
        let vcom = VecComEq {
            comm,
            comms,
            h,
            g_bar,
            h_bar,
            gis,
        };
        let secret = (xis, r, ris);
        let challenge_prefix = generate_challenge_prefix(csprng);
        let mut ro = RandomOracle::domain(challenge_prefix);
        let proof = prove(&mut ro.split(), &vcom, secret, csprng).expect("Input data is valid.");
        let mut wrong_ro = RandomOracle::domain(generate_challenge_prefix(csprng));
        assert!(!verify(&mut wrong_ro, &vcom, &proof));
        assert!(!verify(&mut ro, &vcom_wrong_comm, &proof));
        assert!(!verify(&mut ro, &vcom_wrong_comms, &proof));
        assert!(!verify(&mut ro, &vcom_wrong_gis, &proof));
    }

    #[test]
    pub fn test_vcom_simple_setup() {
        let csprng = &mut thread_rng();

        let g0 = G1::generate(csprng);
        let g1 = G1::generate(csprng);
        let g2 = G1::generate(csprng);
        let g3 = G1::generate(csprng);
        let gis = vec![g0, g1, g2, g3];

        let x0 = G1::generate_scalar(csprng);
        let x1 = G1::generate_scalar(csprng);
        let x2 = G1::generate_scalar(csprng);
        let x3 = G1::generate_scalar(csprng);
        let xis = vec![x0, x1, x2, x3];

        let r1 = Value::new(G1::generate_scalar(csprng));
        let r2 = Value::new(G1::generate_scalar(csprng));
        let mut ris = BTreeMap::new();

        let mut comms = BTreeMap::new();
        let h = G1::generate(csprng);
        let g_bar = G1::generate(csprng);
        let h_bar = G1::generate(csprng);
        let r = Value::new(G1::generate_scalar(csprng));
        let comm = Commitment(multiexp(&[g0, g1, g2, g3, h], &[x0, x1, x2, x3, *r]));

        let comm1 = g_bar
            .mul_by_scalar(&x1)
            .plus_point(&h_bar.mul_by_scalar(&r1));
        let comm2 = g_bar
            .mul_by_scalar(&x2)
            .plus_point(&h_bar.mul_by_scalar(&r2));
        comms.insert(1, Commitment(comm1));
        comms.insert(2, Commitment(comm2));
        ris.insert(1, r1);
        ris.insert(2, r2);
        let agg = VecComEq {
            comm,
            comms,
            h,
            g_bar,
            h_bar,
            gis,
        };
        let secret = (xis, r, ris);
        let challenge_prefix = generate_challenge_prefix(csprng);
        let mut ro = RandomOracle::domain(challenge_prefix);
        let proof = prove(&mut ro.split(), &agg, secret, csprng).expect("Input data is valid.");
        assert!(verify(&mut ro, &agg, &proof));
    }
}