1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
//! A collection of auxiliary functions that don't belong anywhere else.
use super::{secret_sharing::Threshold, types::*};
use crate::{
common::{
to_bytes,
types::{KeyIndex, TransactionTime},
ParseResult,
},
curve_arithmetic::{multiexp, Curve, Pairing, Value},
elgamal::*,
pedersen_commitment::Commitment,
};
use anyhow::bail;
use ed25519_dalek::Verifier;
use either::Either;
use ff::{Field, PrimeField};
use rand::*;
use sha2::{Digest, Sha256};
use std::collections::{btree_map::BTreeMap, BTreeSet};
/// Given a list of commitments g^{a_i}h^{r_i}
/// and a point x (the share number), compute
/// g^p(x)h^r(x) where
/// p(x) = a_0 + a_1 x + ... + a_n x^n
/// r(x) = r_0 + r_1 x + ... + r_n x^n
pub fn commitment_to_share<C: Curve>(
share_number: &C::Scalar,
coeff_commitments: &[Commitment<C>],
) -> Commitment<C> {
let n = coeff_commitments.len();
if n == 0 {
return Commitment(C::zero_point());
}
let mut exponents = Vec::with_capacity(n);
let mut exponent: C::Scalar = C::Scalar::one();
for _ in 0..n {
exponents.push(exponent);
exponent.mul_assign(share_number);
}
Commitment(multiexp(coeff_commitments, &exponents))
}
/// Interpret the array as coefficients of a polynomial starting at 0,
/// and evaluate the polynomial at the given point.
pub fn evaluate_poly<F: Field, R: AsRef<F>>(coeffs: &[R], point: &F) -> F {
let mut eval: F = F::zero();
// Horner's scheme at point point
for rand in coeffs.iter().rev() {
eval.mul_assign(point);
eval.add_assign(rand.as_ref());
}
eval
}
/// This function is used for encryption of the PRF key share in chunks,
/// where the chunks are written in little endian.
/// The arguments are
/// - context - the global context,
/// - pk - the public key for encryption
/// - share - the share we want to encrypt
/// The output is a 3-tuple concisting of
/// 8 Cipher's, 8 Randomness's and 8 scalars.
/// The ciphers and randomnesses come from the
/// encryption in chunks itself.
/// The scalars are the chunks themselves (in little endian).
#[allow(clippy::type_complexity)]
pub fn encrypt_prf_share<C: Curve, R: Rng>(
context: &GlobalContext<C>,
pk: &PublicKey<C>,
share: &Value<C>,
csprng: &mut R,
) -> ([Cipher<C>; 8], [Randomness<C>; 8], [C::Scalar; 8]) {
// The generator for encryption in the exponent is the second component of the
// commitment key, the 'h'.
let h = context.encryption_in_exponent_generator();
// let mut ciphers = encrypt_in_chunks_given_generator(pk, share, CHUNK_SIZE, h,
// csprng);
let chunks = value_to_chunks::<C>(share, CHUNK_SIZE);
let mut ciphers = pk.encrypt_exponent_vec_given_generator(&chunks, h, csprng);
// these are guaranteed to exist because we used `ChunkSize::ThirtyTwo`. The
// encryptions are in little-endian limbs, so the last one is the encryption
// of the high bits.
let (encryption_8, randomness_8) = ciphers.pop().unwrap();
let (encryption_7, randomness_7) = ciphers.pop().unwrap();
let (encryption_6, randomness_6) = ciphers.pop().unwrap();
let (encryption_5, randomness_5) = ciphers.pop().unwrap();
let (encryption_4, randomness_4) = ciphers.pop().unwrap();
let (encryption_3, randomness_3) = ciphers.pop().unwrap();
let (encryption_2, randomness_2) = ciphers.pop().unwrap();
let (encryption_1, randomness_1) = ciphers.pop().unwrap();
let enc = [
encryption_1,
encryption_2,
encryption_3,
encryption_4,
encryption_5,
encryption_6,
encryption_7,
encryption_8,
];
let rand = [
randomness_1,
randomness_2,
randomness_3,
randomness_4,
randomness_5,
randomness_6,
randomness_7,
randomness_8,
];
let chunks = [
*chunks[0], *chunks[1], *chunks[2], *chunks[3], *chunks[4], *chunks[5], *chunks[6],
*chunks[7],
];
(enc, rand, chunks)
}
/// Encode attribute tags into a big-integer bits. The tags are encoded from
/// least significant bit up, i.e., LSB of the result is set IFF tag0 is in the
/// list. This function will fail if
/// - there are repeated attributes in the list
/// - there are tags in the list which do not fit into the field capacity
pub fn encode_tags<'a, F: PrimeField, I: std::iter::IntoIterator<Item = &'a AttributeTag>>(
i: I,
) -> ParseResult<F> {
// Since F is supposed to be a field, its capacity must be at least 1, hence the
// next line is safe. Maximum tag that can be stored.
let max_tag = F::CAPACITY - 1;
let mut f = F::zero().into_repr();
let limbs = f.as_mut(); // this is an array of 64 bit limbs, with least significant digit first
for &AttributeTag(tag) in i.into_iter() {
let idx = tag / 64;
let place = tag % 64;
if u32::from(tag) > max_tag || usize::from(idx) > limbs.len() {
bail!("Tag out of range: {}", tag)
}
let mask: u64 = 1 << place;
if limbs[usize::from(idx)] & mask != 0 {
bail!("Duplicate tag {}", tag)
} else {
limbs[usize::from(idx)] |= mask;
}
}
// This should not fail (since we check capacity), but in case it does we just
// propagate the error.
Ok(F::from_repr(f)?)
}
/// Encode anonymity revokers into a list of scalars.
/// The encoding is as follows.
/// Given a list of identity providers, and a capacity C,
/// we encode it into multiple scalars, in big-endian representation.
/// The encodings are shifted, and the last (least significant) bit
/// of the scalar encodes whether there are more scalars to follow.
/// That is the case if and only if the bit is 1.
/// The field must be big enough to encode u64.
///
/// This function will encode sorted identities
pub fn encode_ars<F: PrimeField>(ars: &BTreeSet<ArIdentity>) -> Option<Vec<F>> {
let max_bit: usize = (F::CAPACITY - 1) as usize;
// Collect into an __acending__ vector.
let ars = ars.iter().copied().collect::<Vec<_>>();
// NB: This 32 must be the same as the size of the ArIdentity.
let num_ars_per_element = max_bit / 32;
let chunks = ars.chunks(num_ars_per_element);
let num_scalars = chunks.len();
let mut scalars = Vec::with_capacity(num_scalars);
let mut two = F::one();
two.add_assign(&F::one());
let two = two;
for chunk in chunks {
let mut f = F::zero().into_repr();
for (i, &ar_id) in chunk.iter().enumerate() {
let ar_id: u32 = ar_id.into();
let x: u64 = if i % 2 == 0 {
u64::from(ar_id)
} else {
u64::from(ar_id) << 32
};
f.as_mut()[i / 2] |= x;
}
let mut scalar = F::from_repr(f).ok()?;
// shift one bit left.
scalar.mul_assign(&two);
scalars.push(scalar)
}
if num_scalars == 0 {
scalars.push(F::zero())
}
// This should not fail since we've explicitly added an element to
// make sure we have enough scalars, but we still just propagate the error.
scalars.last_mut()?.add_assign(&F::one());
Some(scalars)
}
/// Encode two yearmonth values into a scalar.
/// This encodes them after converting them into u32, first putting created_at,
/// and then valid_to into the scalar. Thus create_at starts at the
/// least-significant bit. The threshold is stored in the next byte.
///
/// NB: The field's capacity must be at least 128 bits.
pub fn encode_public_credential_values<F: PrimeField>(
created_at: YearMonth,
valid_to: YearMonth,
threshold: Threshold,
) -> ParseResult<F> {
let mut f = F::zero().into_repr();
let ca: u32 = created_at.into();
let vt: u32 = valid_to.into();
let s = u64::from(vt) << 32 | u64::from(ca);
f.as_mut()[0] = s; // limbs in as_mut are little endian.
let threshold: u8 = threshold.into();
f.as_mut()[1] = u64::from(threshold);
Ok(F::from_repr(f)?)
}
/// This function verifies that the signature inside
/// the AccountOwnershipProof is a signature of the given message.
/// The arguments are
/// - keys - the verification keys
/// - threshold - the signature threshold
/// - proof_acc_sk - the AccountOwnershipProof containing the signature to be
/// verified
/// - msg - the message
pub fn verify_account_ownership_proof(
keys: &BTreeMap<KeyIndex, VerifyKey>,
threshold: SignatureThreshold,
proof_acc_sk: &AccountOwnershipProof,
msg: &[u8],
) -> bool {
// we check all the keys that were provided, and check enough were provided
// compared to the threshold
// We also make sure that no more than 255 keys are provided, as well as
// - all keys are distinct
// - at least one key is provided
// - there are the same number of proofs and keys
let Ok(num_proofs) = proof_acc_sk.num_proofs() else {
return false;
};
if num_proofs < threshold
|| keys.len() > 255
|| keys.is_empty()
|| usize::from(u8::from(num_proofs)) != keys.len()
{
return false;
}
// set of processed keys already
let mut processed = BTreeSet::new();
for (idx, key) in keys.iter() {
// insert returns true if key was __not__ present
if !processed.insert(key) {
return false;
}
if let Some(sig) = proof_acc_sk.sigs.get(idx) {
let VerifyKey::Ed25519VerifyKey(ref key) = key;
if key.verify(msg, sig).is_err() {
return false;
}
} else {
return false;
}
}
true
}
/// Compute the hash of the credential deployment that should be signed by the
/// account keys for deployment.
/// If `new_or_existing` is `Left` then this credential will create a new
/// account, and the transaction expiry should be signed.
/// otherwise it is going to be deployed to the given account address, and the
/// address should be signed.
pub fn credential_hash_to_sign<
P: Pairing,
C: Curve<Scalar = P::ScalarField>,
AttributeType: Attribute<C::Scalar>,
>(
values: &CredentialDeploymentValues<C, AttributeType>,
proofs: &IdOwnershipProofs<P, C>,
new_or_existing: &Either<TransactionTime, AccountAddress>,
) -> Vec<u8> {
let mut hasher = Sha256::new();
hasher.update(&to_bytes(&values));
hasher.update(&to_bytes(&proofs));
// the serialization of Either has 0 tag for the left variant, and 1 for the
// right
hasher.update(&to_bytes(&new_or_existing));
let to_sign = &hasher.finalize();
to_sign.to_vec()
}
/// Given two ordered iterators call the corresponding functions in the
/// increasing order of keys. That is, essentially merge the two iterators into
/// an ordered iterator and then map, but this is all done inline.
pub fn merge_iter<'a, K: Ord + 'a, V1: 'a, V2: 'a, I1, I2, F>(i1: I1, i2: I2, mut f: F)
where
I1: std::iter::IntoIterator<Item = (&'a K, &'a V1)>,
I2: std::iter::IntoIterator<Item = (&'a K, &'a V2)>,
F: FnMut(Either<&'a V1, &'a V2>), {
let mut iter_1 = i1.into_iter().peekable();
let mut iter_2 = i2.into_iter().peekable();
while let (Some(&(tag_1, v_1)), Some(&(tag_2, v_2))) = (iter_1.peek(), iter_2.peek()) {
if tag_1 < tag_2 {
f(Either::Left(v_1));
// advance the first iterator
let _ = iter_1.next().is_none();
} else {
f(Either::Right(v_2));
// advance the second iterator
let _ = iter_2.next();
}
}
for (_, v) in iter_1 {
f(Either::Left(v))
}
for (_, v) in iter_2 {
f(Either::Right(v))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::common::to_bytes;
use pairing::bls12_381::Fr;
use rand::{thread_rng, Rng};
use std::collections::BTreeMap;
#[test]
pub fn test_last_bit() {
let ars = (1..10).map(ArIdentity::new).collect::<BTreeSet<_>>();
let encoded = encode_ars::<Fr>(&ars).expect("Encodign should succeed.");
// Field size of Fr is 254 bits, so what we expect is to have two scalars
assert_eq!(encoded.len(), 2, "Encoded ARs should fit into two scalars.");
let s1 = to_bytes(&encoded[0]);
let s2 = to_bytes(&encoded[1]);
// last bit of the first one must be 0
assert_eq!(s1[31] & 1u8, 0u8, "Last bit of the first scalar must be 0.");
assert_eq!(
s2[31] & 1u8,
1u8,
"Last bit of the second scalar must be 1."
);
}
#[test]
// Test that the encoding of anonymity revokers is injective.
pub fn test_encoding_injective() {
let mut csprng = thread_rng();
let mut seen = BTreeMap::new();
for n in 1..50 {
let mut xs = vec![ArIdentity::new(1); n];
for x in xs.iter_mut() {
*x = ArIdentity::new(csprng.gen_range(1, 100));
}
let set = xs.iter().copied().collect::<BTreeSet<_>>();
let encoded = encode_ars::<Fr>(&set).expect("Encoding should succeed.");
if let Some(set_ex) = seen.insert(encoded.clone(), set.clone()) {
assert_eq!(set, set_ex);
}
}
}
}