commonware-codec 0.0.54

Serialize structured data.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
//! Codec implementations for various map types.
//!
//! For portability and consistency between architectures,
//! the size of the map must fit within a [`u32`].

use crate::{
    codec::{EncodeSize, Read, Write},
    error::Error,
    RangeCfg,
};
use bytes::{Buf, BufMut};
use std::{
    cmp::Ordering,
    collections::{BTreeMap, HashMap},
    hash::Hash,
};

const BTREEMAP_TYPE: &str = "BTreeMap";
const HASHMAP_TYPE: &str = "HashMap";

/// Read keyed items from [Buf] in ascending order.
fn read_ordered_map<K, V, F>(
    buf: &mut impl Buf,
    len: usize,
    k_cfg: &K::Cfg,
    v_cfg: &V::Cfg,
    mut insert: F,
    map_type: &'static str,
) -> Result<(), Error>
where
    K: Read + Ord,
    V: Read,
    F: FnMut(K, V) -> Option<V>,
{
    let mut last: Option<(K, V)> = None;
    for _ in 0..len {
        // Read key
        let key = K::read_cfg(buf, k_cfg)?;

        // Check if keys are in ascending order relative to the previous key
        if let Some((ref last_key, _)) = last {
            match key.cmp(last_key) {
                Ordering::Equal => return Err(Error::Invalid(map_type, "Duplicate key")),
                Ordering::Less => return Err(Error::Invalid(map_type, "Keys must ascend")),
                _ => {}
            }
        }

        // Read value
        let value = V::read_cfg(buf, v_cfg)?;

        // Add previous item, if exists
        if let Some((last_key, last_value)) = last.take() {
            insert(last_key, last_value);
        }
        last = Some((key, value));
    }

    // Add last item, if exists
    if let Some((last_key, last_value)) = last {
        insert(last_key, last_value);
    }

    Ok(())
}

// ---------- BTreeMap ----------

impl<K: Ord + Hash + Eq + Write, V: Write> Write for BTreeMap<K, V> {
    fn write(&self, buf: &mut impl BufMut) {
        self.len().write(buf);

        // Keys are already sorted in BTreeMap, so we can iterate directly
        for (k, v) in self {
            k.write(buf);
            v.write(buf);
        }
    }
}

impl<K: Ord + Hash + Eq + EncodeSize, V: EncodeSize> EncodeSize for BTreeMap<K, V> {
    fn encode_size(&self) -> usize {
        // Start with the size of the length prefix
        let mut size = self.len().encode_size();

        // Add the encoded size of each key and value
        for (k, v) in self {
            size += k.encode_size();
            size += v.encode_size();
        }
        size
    }
}

impl<K: Read + Clone + Ord + Hash + Eq, V: Read + Clone> Read for BTreeMap<K, V> {
    type Cfg = (RangeCfg, (K::Cfg, V::Cfg));

    fn read_cfg(buf: &mut impl Buf, (range, (k_cfg, v_cfg)): &Self::Cfg) -> Result<Self, Error> {
        // Read and validate the length prefix
        let len = usize::read_cfg(buf, range)?;
        let mut map = BTreeMap::new();

        // Read items in ascending order
        read_ordered_map(
            buf,
            len,
            k_cfg,
            v_cfg,
            |k, v| map.insert(k, v),
            BTREEMAP_TYPE,
        )?;

        Ok(map)
    }
}

// ---------- HashMap ----------

impl<K: Ord + Hash + Eq + Write, V: Write> Write for HashMap<K, V> {
    fn write(&self, buf: &mut impl BufMut) {
        self.len().write(buf);

        // Sort the keys to ensure deterministic encoding
        let mut entries: Vec<_> = self.iter().collect();
        entries.sort_by(|a, b| a.0.cmp(b.0));
        for (k, v) in entries {
            k.write(buf);
            v.write(buf);
        }
    }
}

impl<K: Ord + Hash + Eq + EncodeSize, V: EncodeSize> EncodeSize for HashMap<K, V> {
    fn encode_size(&self) -> usize {
        // Start with the size of the length prefix
        let mut size = self.len().encode_size();

        // Add the encoded size of each key and value
        // Note: Iteration order doesn't matter for size calculation.
        for (k, v) in self {
            size += k.encode_size();
            size += v.encode_size();
        }
        size
    }
}

// Read implementation for HashMap
impl<K: Read + Clone + Ord + Hash + Eq, V: Read + Clone> Read for HashMap<K, V> {
    type Cfg = (RangeCfg, (K::Cfg, V::Cfg));

    fn read_cfg(buf: &mut impl Buf, (range, (k_cfg, v_cfg)): &Self::Cfg) -> Result<Self, Error> {
        // Read and validate the length prefix
        let len = usize::read_cfg(buf, range)?;
        let mut map = HashMap::with_capacity(len);

        // Read items in ascending order
        read_ordered_map(
            buf,
            len,
            k_cfg,
            v_cfg,
            |k, v| map.insert(k, v),
            HASHMAP_TYPE,
        )?;

        Ok(map)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Decode, Encode, FixedSize};
    use bytes::{Bytes, BytesMut};
    use std::fmt::Debug;

    // Manual round trip test function for BTreeMap with non-default configs
    fn round_trip_btree<K, V, KCfg, VCfg>(
        map: &BTreeMap<K, V>,
        range_cfg: RangeCfg,
        k_cfg: KCfg,
        v_cfg: VCfg,
    ) where
        K: Write + EncodeSize + Read<Cfg = KCfg> + Clone + Ord + Hash + Eq + PartialEq + Debug,
        V: Write + EncodeSize + Read<Cfg = VCfg> + Clone + PartialEq + Debug,
        BTreeMap<K, V>: Read<Cfg = (RangeCfg, (K::Cfg, V::Cfg))>
            + Decode<Cfg = (RangeCfg, (K::Cfg, V::Cfg))>
            + PartialEq
            + Write
            + EncodeSize,
    {
        let encoded = map.encode();
        assert_eq!(encoded.len(), map.encode_size());
        let config_tuple = (range_cfg, (k_cfg, v_cfg));
        let decoded = BTreeMap::<K, V>::decode_cfg(encoded, &config_tuple)
            .expect("decode_cfg failed for BTreeMap");
        assert_eq!(map, &decoded);
    }

    fn round_trip_hash<K, V, KCfg, VCfg>(
        map: &HashMap<K, V>,
        range_cfg: RangeCfg,
        k_cfg: KCfg,
        v_cfg: VCfg,
    ) where
        K: Write + EncodeSize + Read<Cfg = KCfg> + Clone + Ord + Hash + Eq + PartialEq + Debug,
        V: Write + EncodeSize + Read<Cfg = VCfg> + Clone + PartialEq + Debug,
        HashMap<K, V>: Read<Cfg = (RangeCfg, (K::Cfg, V::Cfg))>
            + Decode<Cfg = (RangeCfg, (K::Cfg, V::Cfg))>
            + PartialEq
            + Write
            + EncodeSize,
    {
        let encoded = map.encode();
        assert_eq!(encoded.len(), map.encode_size());
        let config_tuple = (range_cfg, (k_cfg, v_cfg));
        let decoded = HashMap::<K, V>::decode_cfg(encoded, &config_tuple)
            .expect("decode_cfg failed for HashMap");
        assert_eq!(map, &decoded);
    }

    // Manual round trip test function for non-default configs
    fn round_trip<K, V>(map: &HashMap<K, V>, range_cfg: RangeCfg, k_cfg: K::Cfg, v_cfg: V::Cfg)
    where
        K: Write + EncodeSize + Read + Clone + Ord + Hash + Eq + PartialEq + Debug,
        V: Write + EncodeSize + Read + Clone + PartialEq + Debug,
        HashMap<K, V>: Read<Cfg = (RangeCfg, (K::Cfg, V::Cfg))> + PartialEq + Write + EncodeSize,
    {
        let encoded = map.encode();
        let config_tuple = (range_cfg, (k_cfg, v_cfg));
        let decoded = HashMap::<K, V>::decode_cfg(encoded, &config_tuple)
            .expect("decode_cfg failed for HashMap");
        assert_eq!(map, &decoded);
    }

    // --- BTreeMap Tests ---

    #[test]
    fn test_empty_btreemap() {
        let map = BTreeMap::<u32, u64>::new();
        round_trip_btree(&map, (..).into(), (), ());
        assert_eq!(map.encode_size(), 1); // varint 0
        let encoded = map.encode();
        assert_eq!(encoded, Bytes::from_static(&[0]));
    }

    #[test]
    fn test_simple_btreemap_u32_u64() {
        let mut map = BTreeMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);
        map.insert(2u32, 200u64);
        round_trip_btree(&map, (..).into(), (), ());
        assert_eq!(map.encode_size(), 1 + 3 * (u32::SIZE + u64::SIZE));
        // Check encoding order (BTreeMap guarantees sorted keys: 1, 2, 5)
        let mut expected = BytesMut::new();
        3usize.write(&mut expected); // Map length = 3
        1u32.write(&mut expected);
        100u64.write(&mut expected);
        2u32.write(&mut expected);
        200u64.write(&mut expected);
        5u32.write(&mut expected);
        500u64.write(&mut expected);
        assert_eq!(map.encode(), expected.freeze());
    }

    #[test]
    fn test_large_btreemap() {
        // Fixed-size items
        let mut map = BTreeMap::new();
        for i in 0..1000 {
            map.insert(i as u16, i as u64 * 2);
        }
        round_trip_btree(&map, (0..=1000).into(), (), ());

        // Variable-size items
        let mut map = BTreeMap::new();
        for i in 0..1000usize {
            map.insert(i, 1000usize + i);
        }
        round_trip_btree(
            &map,
            (0..=1000).into(),
            (..=1000).into(),
            (1000..=2000).into(),
        );
    }

    #[test]
    fn test_btreemap_with_variable_values() {
        let mut map = BTreeMap::new();
        map.insert(Bytes::from_static(b"apple"), vec![1, 2]);
        map.insert(Bytes::from_static(b"banana"), vec![3, 4, 5]);
        map.insert(Bytes::from_static(b"cherry"), vec![]);

        let map_range = 0..=10;
        let key_range = ..=10;
        let val_range = 0..=100;

        round_trip_btree(
            &map,
            map_range.into(),
            key_range.into(),
            (val_range.into(), ()),
        );
    }

    #[test]
    fn test_btreemap_decode_length_limit_exceeded() {
        let mut map = BTreeMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let encoded = map.encode();
        let config_tuple = ((0..=1).into(), ((), ()));

        let result = BTreeMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::InvalidLength(2))));
    }

    #[test]
    fn test_btreemap_decode_value_length_limit_exceeded() {
        let mut map = BTreeMap::new();
        map.insert(Bytes::from_static(b"key1"), vec![1, 2, 3, 4, 5]);

        let key_range = ..=10;
        let map_range = 0..=10;
        let restrictive_val_range = 0..=3;

        let encoded = map.encode();
        let config_tuple = (
            map_range.into(),
            (key_range.into(), (restrictive_val_range.into(), ())),
        );
        let result = BTreeMap::<Bytes, Vec<u8>>::decode_cfg(encoded, &config_tuple);

        assert!(matches!(result, Err(Error::InvalidLength(5))));
    }

    #[test]
    fn test_btreemap_decode_invalid_key_order() {
        let mut encoded = BytesMut::new();
        2usize.write(&mut encoded); // Map length = 2
        5u32.write(&mut encoded); // Key 5
        500u64.write(&mut encoded); // Value 500
        2u32.write(&mut encoded); // Key 2 (out of order)
        200u64.write(&mut encoded); // Value 200

        let range = (..).into();
        let config_tuple = (range, ((), ()));

        let result = BTreeMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        // Note: Error message uses HashMap currently, should ideally be BTreeMap
        assert!(matches!(
            result,
            Err(Error::Invalid("BTreeMap", "Keys must ascend"))
        ));
    }

    #[test]
    fn test_btreemap_decode_duplicate_key() {
        let mut encoded = BytesMut::new();
        2usize.write(&mut encoded); // Map length = 2
        1u32.write(&mut encoded); // Key 1
        100u64.write(&mut encoded); // Value 100
        1u32.write(&mut encoded); // Duplicate Key 1
        200u64.write(&mut encoded); // Value 200

        let range = (..).into();
        let config_tuple = (range, ((), ()));

        let result = BTreeMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        // Note: Error message uses HashMap currently, should ideally be BTreeMap
        assert!(matches!(
            result,
            Err(Error::Invalid("BTreeMap", "Duplicate key"))
        ));
    }

    #[test]
    fn test_btreemap_decode_end_of_buffer_key() {
        let mut map = BTreeMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let mut encoded = map.encode();
        encoded.truncate(map.encode_size() - 10); // Truncate during last key/value pair (key 5)

        let range = (..).into();
        let config_tuple = (range, ((), ()));
        let result = BTreeMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::EndOfBuffer)));
    }

    #[test]
    fn test_btreemap_decode_end_of_buffer_value() {
        let mut map = BTreeMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let mut encoded = map.encode();
        encoded.truncate(map.encode_size() - 4); // Truncate during last value (for key 5)

        let range = (..).into();
        let config_tuple = (range, ((), ()));
        let result = BTreeMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::EndOfBuffer)));
    }

    #[test]
    fn test_btreemap_decode_extra_data() {
        let mut map = BTreeMap::new();
        map.insert(1u32, 100u64);

        let mut encoded = map.encode();
        encoded.put_u8(0xFF); // Add extra byte

        // Use decode_cfg which enforces buffer is fully consumed
        let config_tuple = ((..).into(), ((), ()));
        let result = BTreeMap::<u32, u64>::decode_cfg(encoded.clone(), &config_tuple);
        assert!(matches!(result, Err(Error::ExtraData(1))));

        // Verify that read_cfg would succeed (doesn't check for extra data)
        let read_result = BTreeMap::<u32, u64>::read_cfg(&mut encoded.clone(), &config_tuple);
        assert!(read_result.is_ok());
        let decoded_map = read_result.unwrap();
        assert_eq!(decoded_map.len(), 1);
        assert_eq!(decoded_map.get(&1u32), Some(&100u64));
    }

    #[test]
    fn test_btreemap_deterministic_encoding() {
        // In-order
        let mut map2 = BTreeMap::new();
        (0..=1000u32).for_each(|i| {
            map2.insert(i, i * 2);
        });

        // Reverse order
        let mut map1 = BTreeMap::new();
        (0..=1000u32).rev().for_each(|i| {
            map1.insert(i, i * 2);
        });

        assert_eq!(map1.encode(), map2.encode());
    }

    #[test]
    fn test_btreemap_conformity() {
        // Case 1: Empty BTreeMap<u8, u16>
        let map1 = BTreeMap::<u8, u16>::new();
        let mut expected1 = BytesMut::new();
        0usize.write(&mut expected1); // Length 0
        assert_eq!(map1.encode(), expected1.freeze());
        assert_eq!(map1.encode_size(), 1);

        // Case 2: Simple BTreeMap<u8, u16>
        // BTreeMap will store and encode keys in sorted order: 1, 2
        let mut map2 = BTreeMap::<u8, u16>::new();
        map2.insert(2u8, 0xBBBBu16); // Inserted out of order
        map2.insert(1u8, 0xAAAAu16);

        let mut expected2 = BytesMut::new();
        2usize.write(&mut expected2); // Length 2
        1u8.write(&mut expected2); // Key 1
        0xAAAAu16.write(&mut expected2); // Value for key 1
        2u8.write(&mut expected2); // Key 2
        0xBBBBu16.write(&mut expected2); // Value for key 2
        assert_eq!(map2.encode(), expected2.freeze());
        // Expected size: 1 (len) + (1 (u8) + 2 (u16)) * 2 entries = 1 + 3*2 = 7
        assert_eq!(map2.encode_size(), 1 + (u8::SIZE + u16::SIZE) * 2);

        // Case 3: BTreeMap<u16, bool>
        // BTreeMap will store and encode keys in sorted order: 0x0101, 0x0202, 0x0303
        let mut map3 = BTreeMap::<u16, bool>::new();
        map3.insert(0x0303u16, true);
        map3.insert(0x0101u16, false);
        map3.insert(0x0202u16, true);

        let mut expected3 = BytesMut::new();
        3usize.write(&mut expected3); // Length 3
        0x0101u16.write(&mut expected3); // Key 0x0101
        false.write(&mut expected3); // Value false (0x00)
        0x0202u16.write(&mut expected3); // Key 0x0202
        true.write(&mut expected3); // Value true (0x01)
        0x0303u16.write(&mut expected3); // Key 0x0303
        true.write(&mut expected3); // Value true (0x01)
        assert_eq!(map3.encode(), expected3.freeze());
        // Expected size: 1 (len) + (2 (u16) + 1 (bool)) * 3 entries = 1 + 3*3 = 10
        assert_eq!(map3.encode_size(), 1 + (u16::SIZE + bool::SIZE) * 3);

        // Case 4: BTreeMap with Bytes as key and Vec<u8> as value
        // BTreeMap sorts keys: "a", "b"
        let mut map4 = BTreeMap::<Bytes, Vec<u8>>::new();
        map4.insert(Bytes::from_static(b"b"), vec![20u8, 21u8]);
        map4.insert(Bytes::from_static(b"a"), vec![10u8]);

        let mut expected4 = BytesMut::new();
        2usize.write(&mut expected4); // Map length = 2

        // Key "a" (length 1, 'a')
        Bytes::from_static(b"a").write(&mut expected4);
        // Value vec![10u8] (length 1, 10u8)
        vec![10u8].write(&mut expected4);

        // Key "b" (length 1, 'b')
        Bytes::from_static(b"b").write(&mut expected4);
        // Value vec![20u8, 21u8] (length 2, 20u8, 21u8)
        vec![20u8, 21u8].write(&mut expected4);

        assert_eq!(map4.encode(), expected4.freeze());
        // Expected size:
        // map_len_size = 1
        // key_a_size = 1 (len) + 1 (char) = 2
        // val_a_size = 1 (len) + 1 (byte) = 2
        // key_b_size = 1 (len) + 1 (char) = 2
        // val_b_size = 1 (len) + 2 (bytes) = 3
        // total = 1 + 2 + 2 + 2 + 3 = 10
        let expected_size = 1usize.encode_size()
            + Bytes::from_static(b"a").encode_size()
            + vec![10u8].encode_size()
            + Bytes::from_static(b"b").encode_size()
            + vec![20u8, 21u8].encode_size();
        assert_eq!(map4.encode_size(), expected_size);
    }

    // --- HashMap Tests ---

    #[test]
    fn test_empty_hashmap() {
        let map = HashMap::<u32, u64>::new();
        round_trip_hash(&map, (..).into(), (), ());
        assert_eq!(map.encode_size(), 1);
        let encoded = map.encode();
        assert_eq!(encoded, 0usize.encode());
    }

    #[test]
    fn test_simple_hashmap_u32_u64() {
        let mut map = HashMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);
        map.insert(2u32, 200u64);
        round_trip(&map, (..).into(), (), ());
        assert_eq!(map.encode_size(), 1 + 3 * (u32::SIZE + u64::SIZE));
    }

    #[test]
    fn test_large_hashmap() {
        // Fixed-size items
        let mut map = HashMap::new();
        for i in 0..1000 {
            map.insert(i as u16, i as u64 * 2);
        }
        round_trip_hash(&map, (0..=1000).into(), (), ());

        // Variable-size items
        let mut map = HashMap::new();
        for i in 0..1000usize {
            map.insert(i, 1000usize + i);
        }
        round_trip_hash(
            &map,
            (0..=1000).into(),
            (..=1000).into(),
            (1000..=2000).into(),
        );
    }

    #[test]
    fn test_hashmap_with_variable_values() {
        let mut map = HashMap::new();
        map.insert(Bytes::from_static(b"apple"), vec![1, 2]);
        map.insert(Bytes::from_static(b"banana"), vec![3, 4, 5]);
        map.insert(Bytes::from_static(b"cherry"), vec![]);

        let map_range = RangeCfg::from(0..=10);
        let key_range = RangeCfg::from(..=10);
        let val_range = RangeCfg::from(0..=100);

        round_trip_hash(&map, map_range, key_range, (val_range, ()));
    }

    #[test]
    fn test_hashmap_decode_length_limit_exceeded() {
        let mut map = HashMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let encoded = map.encode();
        let config_tuple = ((0..=1).into(), ((), ()));

        let result = HashMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::InvalidLength(2))));
    }

    #[test]
    fn test_hashmap_decode_value_length_limit_exceeded() {
        let mut map = HashMap::new();
        map.insert(Bytes::from_static(b"key1"), vec![1u8, 2u8, 3u8, 4u8, 5u8]);

        let key_range = RangeCfg::from(..=10);
        let map_range = RangeCfg::from(0..=10);
        let restrictive_val_range = RangeCfg::from(0..=3);

        let encoded = map.encode();
        let config_tuple = (map_range, (key_range, (restrictive_val_range, ())));
        let result = HashMap::<Bytes, Vec<u8>>::decode_cfg(encoded, &config_tuple);

        assert!(matches!(result, Err(Error::InvalidLength(5))));
    }

    #[test]
    fn test_hashmap_decode_invalid_key_order() {
        let mut encoded = BytesMut::new();
        2usize.write(&mut encoded); // Map length = 2
        5u32.write(&mut encoded); // Key 5
        500u64.write(&mut encoded); // Value 500
        2u32.write(&mut encoded); // Key 2 (out of order)
        200u64.write(&mut encoded); // Value 200

        let range = (..).into();
        let config_tuple = (range, ((), ()));

        let result = HashMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(
            result,
            Err(Error::Invalid("HashMap", "Keys must ascend"))
        ));
    }

    #[test]
    fn test_hashmap_decode_duplicate_key() {
        let mut encoded = BytesMut::new();
        2usize.write(&mut encoded); // Map length = 2
        1u32.write(&mut encoded); // Key 1
        100u64.write(&mut encoded); // Value 100
        1u32.write(&mut encoded); // Duplicate Key 1
        200u64.write(&mut encoded); // Value 200

        let range = (..).into();
        let config_tuple = (range, ((), ()));

        let result = HashMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(
            result,
            Err(Error::Invalid("HashMap", "Duplicate key"))
        ));
    }

    #[test]
    fn test_hashmap_decode_end_of_buffer_key() {
        let mut map = HashMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let mut encoded = map.encode();
        encoded.truncate(map.encode_size() - 10); // Truncate during last key/value pair

        let range = (..).into();
        let config_tuple = (range, ((), ()));
        let result = HashMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::EndOfBuffer)));
    }

    #[test]
    fn test_hashmap_decode_end_of_buffer_value() {
        let mut map = HashMap::new();
        map.insert(1u32, 100u64);
        map.insert(5u32, 500u64);

        let mut encoded = map.encode();
        encoded.truncate(map.encode_size() - 4); // Truncate during last value

        let range = RangeCfg::from(..);
        let config_tuple = (range, ((), ()));
        let result = HashMap::<u32, u64>::decode_cfg(encoded, &config_tuple);
        assert!(matches!(result, Err(Error::EndOfBuffer)));
    }

    #[test]
    fn test_hashmap_decode_extra_data() {
        let mut map = HashMap::new();
        map.insert(1u32, 100u64);

        let mut encoded = map.encode();
        encoded.put_u8(0xFF); // Add extra byte

        // Use decode_cfg which enforces buffer is fully consumed
        let config_tuple = ((..).into(), ((), ()));
        let result = HashMap::<u32, u64>::decode_cfg(encoded.clone(), &config_tuple);
        assert!(matches!(result, Err(Error::ExtraData(1))));

        // Verify that read_cfg would succeed (doesn't check for extra data)
        let read_result = HashMap::<u32, u64>::read_cfg(&mut encoded, &config_tuple);
        assert!(read_result.is_ok());
        let decoded_map = read_result.unwrap();
        assert_eq!(decoded_map.len(), 1);
        assert_eq!(decoded_map.get(&1u32), Some(&100u64));
    }

    #[test]
    fn test_hashmap_deterministic_encoding() {
        // In-order
        let mut map2 = HashMap::new();
        (0..=1000u32).for_each(|i| {
            map2.insert(i, i * 2);
        });

        // Reverse order
        let mut map1 = HashMap::new();
        (0..=1000u32).rev().for_each(|i| {
            map1.insert(i, i * 2);
        });

        assert_eq!(map1.encode(), map2.encode());
    }

    #[test]
    fn test_hashmap_conformity() {
        // Case 1: Empty HashMap<u8, u16>
        let map1 = HashMap::<u8, u16>::new();
        let mut expected1 = BytesMut::new();
        0usize.write(&mut expected1); // Length 0
        assert_eq!(map1.encode(), expected1.freeze());

        // Case 2: Simple HashMap<u8, u16>
        // Keys are sorted for encoding: 1, 2
        let mut map2 = HashMap::<u8, u16>::new();
        map2.insert(2u8, 0xBBBBu16); // Inserted out of order
        map2.insert(1u8, 0xAAAAu16);

        let mut expected2 = BytesMut::new();
        2usize.write(&mut expected2); // Length 2
        1u8.write(&mut expected2); // Key 1
        0xAAAAu16.write(&mut expected2); // Value for key 1
        2u8.write(&mut expected2); // Key 2
        0xBBBBu16.write(&mut expected2); // Value for key 2
        assert_eq!(map2.encode(), expected2.freeze());

        // Case 3: HashMap<u16, bool>
        // Keys are sorted for encoding: 0x0101, 0x0202, 0x0303
        let mut map3 = HashMap::<u16, bool>::new();
        map3.insert(0x0303u16, true);
        map3.insert(0x0101u16, false);
        map3.insert(0x0202u16, true);

        let mut expected3 = BytesMut::new();
        3usize.write(&mut expected3); // Length 3
        0x0101u16.write(&mut expected3); // Key 0x0101
        false.write(&mut expected3); // Value false (0x00)
        0x0202u16.write(&mut expected3); // Key 0x0202
        true.write(&mut expected3); // Value true (0x01)
        0x0303u16.write(&mut expected3); // Key 0x0303
        true.write(&mut expected3); // Value true (0x01)
        assert_eq!(map3.encode(), expected3.freeze());

        // Case 4: HashMap with Bytes as key and Vec<u8> as value
        // Keys are sorted for encoding: "a", "b"
        let mut map4 = HashMap::<Bytes, Vec<u8>>::new();
        map4.insert(Bytes::from_static(b"b"), vec![20u8, 21u8]);
        map4.insert(Bytes::from_static(b"a"), vec![10u8]);

        let mut expected4 = BytesMut::new();
        2usize.write(&mut expected4); // Map length = 2

        // Key "a" (length 1, 'a')
        Bytes::from_static(b"a").write(&mut expected4);
        // Value vec![10u8] (length 1, 10u8)
        vec![10u8].write(&mut expected4);

        // Key "b" (length 1, 'b')
        Bytes::from_static(b"b").write(&mut expected4);
        // Value vec![20u8, 21u8] (length 2, 20u8, 21u8)
        vec![20u8, 21u8].write(&mut expected4);

        assert_eq!(map4.encode(), expected4.freeze());
    }
}