1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*!
Incremental computation through constrained memoization.

A _memoized_ function caches its return values so that it only needs to be
executed once per set of unique arguments. This makes for a great optimization
tool. However, basic memoization is rather limited. For more advanced use cases
like incremental compilers, it lacks the necessary granularity. Consider, for
example, the case of the simple `.calc` scripting language. Scripts in this
language consist of a sum of numbers and `eval` statements that reference other
`.calc` scripts. A few examples are:

- `alpha.calc`: `"2 + eval beta.calc"`
- `beta.calc`: `"2 + 3"`
- `gamma.calc`: `"8 + 3"`

We can easily write an interpreter that computes the output of a `.calc` file:

```
/// Evaluate a `.calc` script.
fn evaluate(script: &str, files: &Files) -> i32 {
    script
        .split('+')
        .map(str::trim)
        .map(|part| match part.strip_prefix("eval ") {
            Some(path) => evaluate(&files.read(path), files),
            None => part.parse::<i32>().unwrap(),
        })
        .sum()
}

# struct Files;
impl Files {
    /// Read a file from storage.
    fn read(&self, path: &str) -> String {
        # /*
        ...
        # */ String::new()
    }
}
```

But what if we want to make this interpreter _incremental,_ meaning that it only
recomputes a script's result if it or any of its dependencies change? Basic
memoization won't help us with this because the interpreter needs the whole set
of files as input—meaning that a change to any file invalidates all memoized
results.

This is where comemo comes into play. It implements _constrained memoization_
with more fine-grained access tracking. To use it, we can just:

- Add the [`#[memoize]`](macro@memoize) attribute to the `evaluate` function.
- Add the [`#[track]`](macro@track) attribute to the impl block of `Files`.
- Wrap the `files` argument in comemo's [`Tracked`] container.

This instructs comemo to memoize the evaluation and to automatically track all
file accesses during a memoized call. As a result, we can reuse the result of a
`.calc` script evaluation as as long as its dependencies stay the same—even if
other files change.

```
# /*
use comemo::{memoize, track, Tracked};

/// Evaluate a `.calc` script.
#[memoize]
fn evaluate(script: &str, files: Tracked<Files>) -> i32 {
    ...
}

#[track]
impl Files {
    /// Read a file from storage.
    fn read(&self, path: &str) -> String {
        ...
    }
}
# */
```

For the full example see [`examples/calc.rs`][calc].

[calc]: https://github.com/typst/comemo/blob/main/examples/calc.rs
*/

mod cache;
mod constraint;
mod input;
mod prehashed;
mod track;

pub use crate::cache::evict;
pub use crate::constraint::Constraint;
pub use crate::prehashed::Prehashed;
pub use crate::track::{Track, Tracked, TrackedMut};
pub use comemo_macros::{memoize, track};

/// These are implementation details. Do not rely on them!
#[doc(hidden)]
pub mod internal {
    pub use crate::cache::{last_was_hit, memoized};
    pub use crate::constraint::hash;
    pub use crate::input::{assert_hashable_or_trackable, Args};
    pub use crate::track::{to_parts_mut_mut, to_parts_mut_ref, to_parts_ref, Trackable};

    /// Helper trait for lifetime type families.
    pub trait Family<'a> {
        /// The concrete type with lifetime 'a.
        type Out;
    }
}