1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// modified from crossbeam
use std::cell::RefCell;
use std::fmt;
use std::mem;
use std::panic;
use std::rc::Rc;
use std::sync::Arc;
use std::thread;
use crate::coroutine_impl::{spawn, Coroutine};
use crate::join::JoinHandle;
use crossbeam::atomic::AtomicCell;
/// Like `coroutine::spawn`, but without the closure bounds.
pub unsafe fn spawn_unsafe<'a, F>(f: F) -> JoinHandle<()>
where
F: FnOnce() + Send + 'a,
{
let closure: Box<dyn FnOnce() + 'a> = Box::new(f);
let closure: Box<dyn FnOnce() + Send> = mem::transmute(closure);
spawn(move || closure())
}
pub struct Scope<'a> {
dtors: RefCell<Option<DtorChain<'a>>>,
}
struct DtorChain<'a> {
dtor: Box<dyn FnOnce() + 'a>,
next: Option<Box<DtorChain<'a>>>,
}
enum JoinState {
Running(JoinHandle<()>),
Joined,
}
impl JoinState {
fn join(&mut self) {
let mut state = JoinState::Joined;
mem::swap(self, &mut state);
if let JoinState::Running(handle) = state {
let res = handle.join();
// TODO: when panic happened, the logic need to refine
if !thread::panicking() {
res.unwrap_or_else(|e| panic::resume_unwind(e));
}
}
}
}
/// A handle to a scoped coroutine
pub struct ScopedJoinHandle<T> {
inner: Rc<RefCell<JoinState>>,
packet: Arc<AtomicCell<Option<T>>>,
co: Coroutine,
}
/// Create a new `scope`, for deferred destructors.
///
/// Scopes, in particular, support scoped coroutine spawning.
///
pub fn scope<'a, F, R>(f: F) -> R
where
F: FnOnce(&Scope<'a>) -> R,
{
let mut scope = Scope {
dtors: RefCell::new(None),
};
let ret = f(&scope);
scope.drop_all();
ret
}
impl<'a> fmt::Debug for Scope<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Scope {{ ... }}")
}
}
impl<T> fmt::Debug for ScopedJoinHandle<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ScopedJoinHandle {{ ... }}")
}
}
impl<'a> Scope<'a> {
// This method is carefully written in a transactional style, so
// that it can be called directly and, if any dtor panics, can be
// resumed in the unwinding this causes. By initially running the
// method outside of any destructor, we avoid any leakage problems
// due to @rust-lang/rust#14875.
fn drop_all(&mut self) {
loop {
// use a separate scope to ensure that the RefCell borrow
// is relinquished before running `dtor`
let dtor = {
let mut dtors = self.dtors.borrow_mut();
if let Some(mut node) = dtors.take() {
*dtors = node.next.take().map(|b| *b);
node.dtor
} else {
return;
}
};
dtor();
}
}
/// Schedule code to be executed when exiting the scope.
///
/// This is akin to having a destructor on the stack, except that it is
/// *guaranteed* to be run.
pub fn defer<F>(&self, f: F)
where
F: FnOnce() + 'a,
{
let mut dtors = self.dtors.borrow_mut();
*dtors = Some(DtorChain {
dtor: Box::new(f),
next: dtors.take().map(Box::new),
});
}
/// Create a scoped coroutine.
///
/// `spawn` is similar to the `spawn` function in this library. The
/// difference is that this coroutine is scoped, meaning that it's guaranteed to terminate
/// before the current stack frame goes away, allowing you to reference the parent stack frame
/// directly. This is ensured by having the parent join on the child coroutine before the
/// scope exits.
fn spawn_impl<F, T>(&self, f: F) -> ScopedJoinHandle<T>
where
F: FnOnce() -> T + Send + 'a,
T: Send + 'a,
{
let their_packet = Arc::new(AtomicCell::new(None));
let my_packet = their_packet.clone();
let join_handle = unsafe {
spawn_unsafe(move || {
their_packet.swap(Some(f()));
})
};
let co = join_handle.coroutine().clone();
let deferred_handle = Rc::new(RefCell::new(JoinState::Running(join_handle)));
let my_handle = deferred_handle.clone();
self.defer(move || {
let mut state = deferred_handle.borrow_mut();
state.join();
});
ScopedJoinHandle {
inner: my_handle,
packet: my_packet,
co,
}
}
/// Create a scoped coroutine.
///
/// `spawn` is similar to the `spawn` function in this library. The
/// difference is that this coroutine is scoped, meaning that it's guaranteed to terminate
/// before the current stack frame goes away, allowing you to reference the parent stack frame
/// directly. This is ensured by having the parent join on the child coroutine before the
/// scope exits.
pub unsafe fn spawn<F, T>(&self, f: F) -> ScopedJoinHandle<T>
where
F: FnOnce() -> T + Send + 'a,
T: Send + 'a,
{
self.spawn_impl(f)
}
}
impl<T> ScopedJoinHandle<T> {
/// Join the scoped coroutine, returning the result it produced.
pub fn join(self) -> T {
self.inner.borrow_mut().join();
self.packet.take().unwrap()
}
/// Get the underlying coroutine handle.
pub fn coroutine(&self) -> &Coroutine {
&self.co
}
}
impl<'a> Drop for Scope<'a> {
fn drop(&mut self) {
self.drop_all()
}
}