1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
use crate::activations::Activation;
use crate::costs::Cost;
use crate::layer::{DenseLayer, DropoutLayer};
use crate::setter_enums::*;
use crate::trainer::Trainer;
use serde::{Deserialize, Serialize};

use arrayfire::{
    cols, constant, device_mem_info, diag_extract, div, eq, imax, sum, sum_all, sum_by_key,
    transpose, Array, Dim4,
};

use itertools::izip;

use rand::{thread_rng, Rng};

use ndarray::{ArrayView2, ArrayViewMut2, Axis};

use crossterm::{cursor, QueueableCommand};

use std::{
    collections::HashMap,
    fs::{create_dir, remove_dir_all, File},
    io::{stdout, Read, Write},
    path::Path,
    time::Instant,
};

// Default percentage of training data to set as evaluation data (0.1=5%).
const DEFAULT_EVALUTATION_DATA: f32 = 0.05f32;
// Default percentage of size of training data to set batch size (0.01=1%).
const DEFAULT_BATCH_SIZE: f32 = 0.01f32;
// Default learning rate.
const DEFAULT_LEARNING_RATE: f32 = 0.1f32;
// Default interval in iterations before early stopping.
// early stopping = default early stopping * (size of examples / number of examples) Iterations
const DEFAULT_EARLY_STOPPING: f32 = 500f32;
// Default percentage minimum positive accuracy change required to prevent early stopping or learning rate decay (0.005=0.5%).
const DEFAULT_EVALUATION_MIN_CHANGE: f32 = 0.001f32;
// Default amount to decay learning rate after period of un-notable (what word should I use here?) change.
// `new learning rate = learning rate decay * old learning rate`
const DEFAULT_LEARNING_RATE_DECAY: f32 = 0.5f32;
// Default interval in iterations before learning rate decay.
// interval = default learning rate interval * (size of examples / number of examples) iterations.
const DEFAULT_LEARNING_RATE_INTERVAL: f32 = 200f32;

/// Specifies layers to cosntruct neural net.
pub enum Layer {
    Dropout(f32),
    Dense(u64, Activation),
}
// Specifies layers within neural net.
pub enum InnerLayer {
    Dropout(DropoutLayer),
    Dense(DenseLayer),
}

/// The fundamental neural network struct.
///
/// All other types are ancillary to this structure.
pub struct NeuralNetwork {
    // Inputs to network.
    inputs: u64,
    // Activations of layers.
    layers: Vec<InnerLayer>,
}
impl<'a> NeuralNetwork {
    /// Constructs network of given layers.
    ///
    /// Returns constructed network.
    /// ```
    /// use cogent::{NeuralNetwork,Layer,Activation};
    ///
    /// let mut net = NeuralNetwork::new(2,&[
    ///     Layer::Dense(3,Activation::Sigmoid),
    ///     Layer::Dense(2,Activation::Softmax)
    /// ]);
    /// ```
    pub fn new(mut inputs: u64, layers: &[Layer]) -> NeuralNetwork {
        NeuralNetwork::new_checks(inputs, layers);

        // Necessary variable to use mutable `inputs` to nicely specify right layer sizes.
        let net_inputs = inputs;

        // Sets holder for neural net layers
        let mut inner_layers: Vec<InnerLayer> = Vec::with_capacity(layers.len());

        // Sets iterator across given layers data
        let mut layers_iter = layers.iter();
        let layer_1 = layers_iter.next().unwrap();

        // Constructs first non-input layer
        if let &Layer::Dense(size, activation) = layer_1 {
            inner_layers.push(InnerLayer::Dense(DenseLayer::new(inputs, size, activation)));
            inputs = size;
        } else if let &Layer::Dropout(p) = layer_1 {
            inner_layers.push(InnerLayer::Dropout(DropoutLayer::new(p)));
        }

        // Constructs other layers
        for layer in layers_iter {
            if let &Layer::Dense(size, activation) = layer {
                inner_layers.push(InnerLayer::Dense(DenseLayer::new(inputs, size, activation)));
                inputs = size;
            } else if let &Layer::Dropout(p) = layer {
                inner_layers.push(InnerLayer::Dropout(DropoutLayer::new(p)));
            }
        }

        // Constructs and returns neural network
        return NeuralNetwork {
            inputs: net_inputs,
            layers: inner_layers,
        };
    }
    /// Constructs network of given layers with all weights and biases set to given value.
    /// IMPORTANT: This function seems to cause issues in training and HAS NOT been properly tested, I DO NOT recommend you use this.
    pub fn new_constant(mut inputs: u64, layers: &[Layer], val: f32) -> NeuralNetwork {
        NeuralNetwork::new_checks(inputs, layers);

        // Neccessary variable to use mutable `inputs` to nicely specify right layer sizes.
        let net_inputs = inputs;

        // Sets holder for neural net layers
        let mut inner_layers: Vec<InnerLayer> = Vec::with_capacity(layers.len());

        // Sets iterator across given layers data
        let mut layers_iter = layers.iter();
        let layer_1 = layers_iter.next().unwrap();

        // Constructs first non-input layer
        if let &Layer::Dense(size, activation) = layer_1 {
            inner_layers.push(InnerLayer::Dense(DenseLayer::new_constant(
                inputs, size, activation, val,
            )));
            inputs = size;
        } else if let &Layer::Dropout(p) = layer_1 {
            inner_layers.push(InnerLayer::Dropout(DropoutLayer::new(p)));
        }

        // Constructs other layers
        for layer in layers_iter {
            if let &Layer::Dense(size, activation) = layer {
                inner_layers.push(InnerLayer::Dense(DenseLayer::new_constant(
                    inputs, size, activation, val,
                )));
                inputs = size;
            } else if let &Layer::Dropout(p) = layer {
                inner_layers.push(InnerLayer::Dropout(DropoutLayer::new(p)));
            }
        }

        // Constructs and returns neural network
        return NeuralNetwork {
            inputs: net_inputs,
            layers: inner_layers,
        };
    }
    // Checks that given data to construct neural network from valid.
    fn new_checks(inputs: u64, layers: &[Layer]) {
        // Checks network contains output layer
        if layers.len() == 0 {
            panic!("Requires output layer (layers.len() must be >0).");
        }
        // Checks inputs != 0
        if inputs == 0 {
            panic!("Input size must be >0.");
        }
        // Chekcs last layer is not a dropout layer
        if let Layer::Dropout(_) = layers[layers.len() - 1] {
            panic!("Last layer cannot be a dropout layer.");
        }
    }
    /// Sets activation of layer specified by index (excluding input layer).
    /// ```
    /// use cogent::{NeuralNetwork,Layer,Activation};
    ///
    /// // Net (2 -Sigmoid-> 3 -Sigmoid-> 2)
    /// let mut net = NeuralNetwork::new(2,&[
    ///     Layer::Dense(3,Activation::Sigmoid),
    ///     Layer::Dense(2,Activation::Sigmoid)
    /// ]);
    ///
    /// net.activation(1,Activation::Softmax); // Changes activation of output layer.
    /// // Net will now be (2 -Sigmoid-> 3 -Softmax-> 2)
    /// ```
    pub fn activation(&mut self, index: usize, activation: Activation) {
        // Checks lyaer exists
        if index >= self.layers.len() {
            panic!(
                "Layer {} does not exist. 0 <= given index < {}",
                index,
                self.layers.len()
            );
        }
        // Checks layer has activation function
        if let InnerLayer::Dense(dense_layer) = &mut self.layers[index] {
            dense_layer.activation = activation;
        } else {
            panic!("Layer {} does not have an activation function.", index);
        }
    }
    // TODO Maybe renmae this to 'forepropagate'?
    /// Runs a batch of examples through the network.
    ///
    /// Returns classes.
    pub fn run(&mut self, input: &ndarray::Array2<f32>) -> Vec<usize> {
        if input.len_of(Axis(1)) as u64 != self.inputs {
            panic!(
                "Given data inputs don't match network inputs ({}!={})",
                input.len_of(Axis(1)),
                self.inputs
            );
        }

        // // Converts 2d vec to array for input
        // let in_vec: Vec<f32> = inputs.iter().flat_map(|x| x.clone()).collect();
        // let input: Array<f32> = Array::<f32>::new(
        //     &in_vec,
        //     Dim4::new(&[example_len as u64, in_len as u64, 1, 1]),
        // );

        // Converts `ndarray::Array2` to `arrayfire::Array`
        let dims = Dim4::new(&[
            input.len_of(Axis(1)) as u64,
            input.len_of(Axis(0)) as u64,
            1,
            1,
        ]);
        let input = arrayfire::Array::new(&input.as_slice().unwrap(), dims);

        // Forepropagates
        let output = self.inner_run(&input);
        // Computes classes of each example
        let classes = arrayfire::imax(&output, 0).1;

        // Converts classes array to classes vec
        let classes_vec: Vec<u32> = NeuralNetwork::to_vec(&classes);

        // Returns classes vec casted from `Vec<u32>` to `Vec<usize>`
        return classes_vec.into_iter().map(|x| x as usize).collect();
    }
    fn to_vec<T: arrayfire::HasAfEnum + Default + Clone>(array: &arrayfire::Array<T>) -> Vec<T> {
        let mut vec = vec![T::default(); array.elements()];
        array.host(&mut vec);
        return vec;
    }
    /// Runs a batch of examples through the network.
    ///
    /// Returns output.
    pub fn inner_run(&mut self, inputs: &Array<f32>) -> Array<f32> {
        // Number of examples in input.
        let examples = inputs.dims().get()[1];
        let ones = &constant(1f32, Dim4::new(&[1, examples, 1, 1]));

        // Forepropagates.
        let mut activation = inputs.clone(); // Sets input layer
        for layer in self.layers.iter_mut() {
            activation = match layer {
                InnerLayer::Dropout(dropout_layer) => {
                    dropout_layer.forepropagate(&activation, ones)
                }
                InnerLayer::Dense(dense_layer) => dense_layer.forepropagate(&activation, &ones).0,
            };
        }

        // Returns activation of last layer.
        return activation;
    }
    /// Begins setting hyperparameters for training.
    ///
    /// Returns `Trainer` struct used to specify hyperparameters
    ///
    /// Training a network to learn an XOR gate:
    /// ```
    /// use ndarray::{Array2,array};
    /// use cogent::{
    ///     NeuralNetwork,Layer,
    ///     Activation,
    ///     EvaluationData
    /// };
    ///
    /// // Sets network
    /// let mut net = NeuralNetwork::new(2,&[
    ///     Layer::Dense(3,Activation::Sigmoid),
    ///     Layer::Dense(2,Activation::Softmax)
    /// ]);
    /// // Sets data
    /// // 0=false,  1=true.
    /// let mut data:Array2<f32> = array![[0.,0.],[1.,0.],[0.,1.],[1.,1.]];
    /// let mut labels:Array2<usize> = array![[0],[1],[1],[0]];
    ///
    /// // Trains network
    /// net.train(&mut data.clone(),&mut labels.clone()) // `.clone()` neccessary to satisfy borrow checker concerning later immutable borrow as evaluation data.
    ///     .learning_rate(2f32)
    ///     .evaluation_data(EvaluationData::Actual(&data,&labels)) // Use testing data as evaluation data.
    /// .go();
    /// ```
    pub fn train(
        &'a mut self,
        data: &'a mut ndarray::Array2<f32>,
        labels: &'a mut ndarray::Array2<usize>,
    ) -> Trainer<'a> {
        self.check_dataset(data, labels);

        let number_of_examples = data.len_of(Axis(1));
        let data_inputs = data.len_of(Axis(0));
        let multiplier: f32 = data_inputs as f32 / number_of_examples as f32;

        let early_stopping_condition: u32 = (DEFAULT_EARLY_STOPPING * multiplier).ceil() as u32;
        let learning_rate_interval: u32 =
            (DEFAULT_LEARNING_RATE_INTERVAL * multiplier).ceil() as u32;

        // TODO Do this better
        let batch_size: usize = if number_of_examples < 100usize {
            number_of_examples
        } else {
            let batch_holder: f32 = DEFAULT_BATCH_SIZE * number_of_examples as f32;
            if batch_holder < 100f32 {
                100usize
            } else {
                batch_holder.ceil() as usize
            }
        };

        return Trainer {
            training_data: data,
            training_labels: labels,
            evaluation_dataset: EvaluationData::Percent(DEFAULT_EVALUTATION_DATA),
            cost: Cost::Crossentropy,
            halt_condition: None,
            log_interval: None,
            batch_size: batch_size,
            learning_rate: DEFAULT_LEARNING_RATE,
            l2: None,
            early_stopping_condition: MeasuredCondition::Iteration(early_stopping_condition),
            evaluation_min_change: Proportion::Percent(DEFAULT_EVALUATION_MIN_CHANGE),
            learning_rate_decay: DEFAULT_LEARNING_RATE_DECAY,
            learning_rate_interval: MeasuredCondition::Iteration(learning_rate_interval),
            checkpoint_interval: None,
            name: None,
            tracking: false,
            neural_network: self,
        };
    }
    /// Checks a dataset has an equal number of example and labels and fits the network.
    ///
    /// This is called whenever you give a dataset to the library, you do not need to call this yourself.
    ///
    /// For example this is called when you pass a dataset to `.train(..)`.
    pub fn check_dataset(&self, data: &ndarray::Array2<f32>, labels: &ndarray::Array2<usize>) {
        // Checks data matches labels.
        let number_of_examples = data.len_of(Axis(0));
        if number_of_examples != labels.len_of(Axis(0)) {
            panic!(
                "Number of examples ({}) does not match number of labels ({}).",
                number_of_examples,
                labels.len_of(Axis(0))
            );
        }

        // Checks all examples fit the neural network.
        let data_inputs = data.len_of(Axis(1));
        if data_inputs != self.inputs as usize {
            panic!(
                "Input size of examples ({}) does not match input size of network ({}).",
                data_inputs, self.inputs
            );
        }

        // Gets number of network outputs
        let net_outs = match &self.layers[self.layers.len() - 1] {
            InnerLayer::Dense(dense_layer) => dense_layer.biases.dims().get()[0] as usize,
            _ => panic!("Last layer is somehow a dropout layer, this should not be possible"),
        };
        for (index, label) in labels.axis_iter(Axis(0)).enumerate() {
            if label[0] > net_outs {
                panic!(
                    "Label of example {} ({}) exceeds network outputs ({}).",
                    index, label[0], net_outs
                );
            }
        }
    }

    // TODO Name this better
    /// Runs training.
    ///
    /// In most cases you shouldn't call this, instead call `.train()` then call the functions to set the hyperparameters, then call `.go()` (which calls this).
    ///
    /// Using this function directly is ugly. Would not recommend.
    pub fn inner_train(
        &mut self,
        mut training_data: ArrayViewMut2<f32>,
        mut training_labels: ArrayViewMut2<usize>,
        evaluation_data: ArrayView2<f32>,
        evaluation_labels: ArrayView2<usize>,
        cost: &Cost,
        halt_condition: Option<HaltCondition>,
        log_interval: Option<MeasuredCondition>,
        batch_size: usize,
        intial_learning_rate: f32,
        l2: Option<f32>,
        early_stopping_n: MeasuredCondition,
        evaluation_min_change: Proportion,
        learning_rate_decay: f32,
        learning_rate_interval: MeasuredCondition,
        checkpoint_interval: Option<MeasuredCondition>,
        name: Option<&str>,
        tracking: bool,
    ) -> () {
        if let Some(_) = checkpoint_interval {
            if !Path::new("checkpoints").exists() {
                // Create folder
                create_dir("checkpoints").unwrap();
            }
            if let Some(folder) = name {
                let path = format!("checkpoints/{}", folder);
                // If folder exists, empty it.
                if Path::new(&path).exists() {
                    remove_dir_all(&path).unwrap(); // Delete folder
                }
                create_dir(&path).unwrap(); // Create folder
            }
        }

        let mut learning_rate: f32 = intial_learning_rate;

        let mut stdout = stdout(); // Handle for standard output for this process.

        let start_instant = Instant::now(); // Beginning instant to compute duration of training.
        let mut iterations_elapsed = 0u32; // Iteration counter of training.

        let mut best_accuracy_iteration = 0u32; // Iteration of best accuracy.
        let mut best_accuracy_instant = Instant::now(); // Instant of best accuracy.
        let mut best_accuracy = 0u32; // Value of best accuracy.

        // Sets array of evaluation data.
        let matrix_evaluation_data = self.matrixify(&evaluation_data, &evaluation_labels);

        // Computes intial evaluation.
        let starting_evaluation =
            self.inner_evaluate(&matrix_evaluation_data, &evaluation_labels, cost);

        // If `log_interval` has been defined, print intial evaluation.
        if let Some(_) = log_interval {
            stdout.write(format!("Iteration: {}, Time: {}, Cost: {:.5}, Classified: {}/{} ({:.3}%), Learning rate: {}\n",
                iterations_elapsed,
                NeuralNetwork::time(start_instant),
                starting_evaluation.0,
                starting_evaluation.1,evaluation_data.len_of(Axis(0)),
                (starting_evaluation.1 as f32)/(evaluation_data.len_of(Axis(0)) as f32) * 100f32,
                learning_rate
            ).as_bytes()).unwrap();
        }

        // TODO Can we only define these if we need them?
        let mut last_checkpointed_instant = Instant::now();
        let mut last_logged_instant = Instant::now();

        //panic!("got here");

        // Backpropgation loop
        // ------------------------------------------------
        loop {
            // TODO Can `matrixify` and `batch_chunks` be combined in this use case to be more efficient?
            // Sets array of training data.
            let training_data_matrix =
                self.matrixify(&training_data.view(), &training_labels.view());

            // Split training data into batchs.
            let batches = batch_chunks(&training_data_matrix, batch_size);

            // Iterates across batches running backpropagation.
            //  If `tracking` output backpropagation percentage progress.
            if tracking {
                let mut percentage: f32 = 0f32;
                stdout.queue(cursor::SavePosition).unwrap();
                let backprop_start_instant = Instant::now();
                let percent_change: f32 =
                    100f32 * batch_size as f32 / training_data_matrix.0.dims().get()[1] as f32;

                for batch in batches {
                    stdout
                        .write(format!("Backpropagating: {:.2}%", percentage).as_bytes())
                        .unwrap();
                    percentage += percent_change;
                    stdout.queue(cursor::RestorePosition).unwrap();
                    stdout.flush().unwrap();

                    // Runs backpropagation
                    self.backpropagate(
                        &batch,
                        learning_rate,
                        cost,
                        l2,
                        training_data.len_of(Axis(0)),
                    );
                }
                stdout
                    .write(
                        format!(
                            "Backpropagated: {}\n",
                            NeuralNetwork::time(backprop_start_instant)
                        )
                        .as_bytes(),
                    )
                    .unwrap();
            } else {
                for batch in batches {
                    // Runs backpropagation
                    self.backpropagate(
                        &batch,
                        learning_rate,
                        cost,
                        l2,
                        training_data.len_of(Axis(0)),
                    );
                }
            }
            iterations_elapsed += 1;

            // Computes iteration evaluation.
            let evaluation = self.inner_evaluate(&matrix_evaluation_data, &evaluation_labels, cost);

            // If `checkpoint_interval` number of iterations or length of duration passed, export weights  (`connections`) and biases (`biases`) to file.
            match checkpoint_interval {
                Some(MeasuredCondition::Iteration(iteration_interval)) => {
                    if iterations_elapsed % iteration_interval == 0 {
                        checkpoint(self, iterations_elapsed.to_string(), name);
                    }
                }
                Some(MeasuredCondition::Duration(duration_interval)) => {
                    if last_checkpointed_instant.elapsed() >= duration_interval {
                        checkpoint(self, NeuralNetwork::time(start_instant), name);
                        last_checkpointed_instant = Instant::now();
                    }
                }
                _ => {}
            }
            // If `log_interval` number of iterations or length of duration passed, print evaluation of network.
            match log_interval {
                // TODO Reduce code duplication here
                Some(MeasuredCondition::Iteration(iteration_interval)) => {
                    if iterations_elapsed % iteration_interval == 0 {
                        log_fn(
                            &mut stdout,
                            iterations_elapsed,
                            start_instant,
                            learning_rate,
                            evaluation,
                            evaluation_data.len_of(Axis(0)),
                        );
                    }
                }
                Some(MeasuredCondition::Duration(duration_interval)) => {
                    if last_logged_instant.elapsed() >= duration_interval {
                        log_fn(
                            &mut stdout,
                            iterations_elapsed,
                            start_instant,
                            learning_rate,
                            evaluation,
                            evaluation_data.len_of(Axis(0)),
                        );
                        last_logged_instant = Instant::now();
                    }
                }
                _ => {}
            }

            // If 100% accuracy, halt.
            if evaluation.1 as usize == evaluation_data.len_of(Axis(0)) {
                break;
            }

            // If `halt_condition` number of iterations occured, duration passed or accuracy acheived, halt training.
            match halt_condition {
                Some(HaltCondition::Iteration(iteration)) => {
                    if iterations_elapsed == iteration {
                        break;
                    }
                }
                Some(HaltCondition::Duration(duration)) => {
                    if start_instant.elapsed() > duration {
                        break;
                    }
                }
                Some(HaltCondition::Accuracy(accuracy)) => {
                    if evaluation.1 >= (evaluation_data.len_of(Axis(0)) as f32 * accuracy) as u32 {
                        break;
                    }
                }
                _ => {}
            }

            // TODO Reduce code duplication here
            // If change in evaluation more than `evaluation_min_change` update `best_accuracy`,`best_accuracy_iteration` and `best_accuracy_instant`.
            match evaluation_min_change {
                Proportion::Percent(percent) => {
                    if (evaluation.1 as f32 / evaluation_data.len_of(Axis(0)) as f32)
                        > (best_accuracy as f32 / evaluation_data.len_of(Axis(0)) as f32) + percent
                    {
                        best_accuracy = evaluation.1;
                        best_accuracy_iteration = iterations_elapsed;
                        best_accuracy_instant = Instant::now();
                    }
                }
                Proportion::Scalar(scalar) => {
                    if evaluation.1 > best_accuracy + scalar {
                        best_accuracy = evaluation.1;
                        best_accuracy_iteration = iterations_elapsed;
                        best_accuracy_instant = Instant::now();
                    }
                }
            }

            // If `early_stopping_n` number of iterations or length of duration passed, without improvement in accuracy (`evaluation.1`), halt training. (early_stopping_n<=halt_condition)
            match early_stopping_n {
                MeasuredCondition::Iteration(stopping_iteration) => {
                    if iterations_elapsed - best_accuracy_iteration == stopping_iteration {
                        println!("---------------\nEarly stoppage!\n---------------");
                        break;
                    }
                }
                MeasuredCondition::Duration(stopping_duration) => {
                    if best_accuracy_instant.elapsed() >= stopping_duration {
                        println!("---------------\nEarly stoppage!\n---------------");
                        break;
                    }
                }
            }

            // If `learning_rate_interval` number of iterations or length of duration passed, without improvement in accuracy (`evaluation.1`), reduce learning rate. (learning_rate_interval<early_stopping_n<=halt_condition)
            match learning_rate_interval {
                MeasuredCondition::Iteration(interval_iteration) => {
                    if iterations_elapsed - best_accuracy_iteration == interval_iteration {
                        learning_rate *= learning_rate_decay
                    }
                }
                MeasuredCondition::Duration(interval_duration) => {
                    if best_accuracy_instant.elapsed() >= interval_duration {
                        learning_rate *= learning_rate_decay
                    }
                }
            }

            // Shuffles training data
            // Training data has been shuffled when it is intially passed to this function, so don't need to shuffle on the 1st itereation.
            shuffle_dataset(&mut training_data, &mut training_labels);
        }

        // Compute and print final evaluation.
        // ------------------------------------------------
        let evaluation = self.inner_evaluate(&matrix_evaluation_data, &evaluation_labels, cost);
        let new_percent = (evaluation.1 as f32) / (evaluation_data.len_of(Axis(0)) as f32) * 100f32;
        let starting_percent =
            (starting_evaluation.1 as f32) / (evaluation_data.len_of(Axis(0)) as f32) * 100f32;
        println!();
        println!("Cost: {:.4} -> {:.4}", starting_evaluation.0, evaluation.0);
        println!(
            "Classified: {} ({:.2}%) -> {} ({:.2}%)",
            starting_evaluation.1, starting_percent, evaluation.1, new_percent
        );
        println!("Cost: {:.4}", evaluation.0 - starting_evaluation.0);
        println!(
            "Classified: +{} (+{:.3}%)",
            evaluation.1 - starting_evaluation.1,
            new_percent - starting_percent
        );
        println!(
            "Time: {}, Iterations: {}",
            NeuralNetwork::time(start_instant),
            iterations_elapsed
        );
        println!();

        // Prints evaluation of network
        fn log_fn(
            stdout: &mut std::io::Stdout,
            iterations_elapsed: u32,
            start_instant: Instant,
            learning_rate: f32,
            evaluation: (f32, u32),
            eval_len: usize,
        ) -> () {
            stdout.write(format!("Iteration: {}, Time: {}, Cost: {:.5}, Classified: {}/{} ({:.3}%), Learning rate: {}\n",
                iterations_elapsed,
                NeuralNetwork::time(start_instant),
                evaluation.0,
                evaluation.1,eval_len,
                (evaluation.1 as f32)/(eval_len as f32) * 100f32,
                learning_rate
            ).as_bytes()).unwrap();
        }
        // TODO This doesn't seem to require any more memory, look into that.
        // Splits data into chunks of examples.
        fn batch_chunks(
            data: &(Array<f32>, Array<f32>),
            batch_size: usize,
        ) -> Vec<(Array<f32>, Array<f32>)> {
            // Number of examples in dataset
            let examples = data.0.dims().get()[1];

            // Number of batches
            let batches = (examples as f32 / batch_size as f32).ceil() as usize;

            // vec containg array input and out for each batch
            let mut chunks: Vec<(Array<f32>, Array<f32>)> = Vec::with_capacity(batches);

            // Iterate over batches setting inputs and outputs
            for i in 0..batches - 1 {
                let batch_indx: usize = i * batch_size;
                let in_batch: Array<f32> = cols(
                    &data.0,
                    batch_indx as u64,
                    (batch_indx + batch_size - 1) as u64,
                );
                let out_batch: Array<f32> = cols(
                    &data.1,
                    batch_indx as u64,
                    (batch_indx + batch_size - 1) as u64,
                );

                chunks.push((in_batch, out_batch));
            }
            // Since length of final batch may be less than `batch_size`, set final batch out of loop.
            let batch_indx: usize = (batches - 1) * batch_size;
            let in_batch: Array<f32> = cols(&data.0, batch_indx as u64, examples - 1);
            let out_batch: Array<f32> = cols(&data.1, batch_indx as u64, examples - 1);
            chunks.push((in_batch, out_batch));

            return chunks;
        }
        // Outputs a checkpoint file.
        fn checkpoint(net: &NeuralNetwork, marker: String, name: Option<&str>) {
            if let Some(folder) = name {
                net.export(&format!("checkpoints/{}/{}", folder, marker));
            } else {
                net.export(&format!("checkpoints/{}", marker));
            }
        }
    }
    // Runs batch backpropgation.
    fn backpropagate(
        &mut self,
        (net_input, target): &(Array<f32>, Array<f32>),
        learning_rate: f32,
        cost: &Cost,
        l2: Option<f32>,
        training_set_length: usize,
    ) {
        // Feeds forward
        // --------------

        let examples = net_input.dims().get()[1];
        let ones = &constant(1f32, Dim4::new(&[1, examples, 1, 1]));

        // Represents activations and weighted outputs of layers.
        //  For element i we have the activation of layer i and the weighted inputs of layer i+1.
        //  All layers have activations, but not all layers have useful weighted inputs (.e.g dropout), this is why we use `Option<..>`
        let mut layer_outs: Vec<(Array<f32>, Option<Array<f32>>)> =
            Vec::with_capacity(self.layers.len());

        // TODO Name this better
        // Sets input layer activation
        let mut input = net_input.clone();

        for layer in self.layers.iter_mut() {
            let (a, z) = match layer {
                InnerLayer::Dropout(dropout_layer) => {
                    (dropout_layer.forepropagate(&input, ones), None)
                }
                InnerLayer::Dense(dense_layer) => {
                    let (a, z) = dense_layer.forepropagate(&input, &ones);
                    (a, Some(z))
                }
            };
            layer_outs.push((input, z));
            input = a;
            //NeuralNetwork::mem_info("Forepropagated layer",false);
        }
        layer_outs.push((input, None));

        //NeuralNetwork::mem_info("Forepropagated",false);

        //println!("step size: {:.4}mb",arrayfire::get_mem_step_size() as f32 / (1024f32*1024f32));

        //panic!("panic after foreprop");

        // Backpropagates
        // --------------

        let mut out_iter = layer_outs.into_iter().rev();
        let l_iter = self.layers.iter_mut().rev();

        let last_activation = &out_iter.next().unwrap().0;

        // ∇(a)C
        let mut partial_error = cost.derivative(target, last_activation);

        for (layer, (a, z)) in izip!(l_iter, out_iter) {
            // w(i)^T dot δ(i)
            // Error of layer i matrix multiplied by transposition of weights connections layer i-1 to layer i.
            partial_error = match layer {
                InnerLayer::Dropout(dropout_layer) => dropout_layer.backpropagate(&partial_error),
                InnerLayer::Dense(dense_layer) => dense_layer.backpropagate(
                    &partial_error,
                    &z.unwrap(),
                    &a,
                    learning_rate,
                    l2,
                    training_set_length,
                ),
            };
            //NeuralNetwork::mem_info("Backpropagated layer",false);
        }
    }

    // For debug purposes
    #[allow(dead_code)]
    fn mem_info(msg: &str, bytes: bool) {
        let mem_info = device_mem_info();
        println!(
            "{} : {:.4}mb | {:.4}mb",
            msg,
            mem_info.0 as f32 / (1024f32 * 1024f32),
            mem_info.2 as f32 / (1024f32 * 1024f32),
        );
        println!("buffers: {} | {}", mem_info.1, mem_info.3);
        if bytes {
            println!("bytes: {} | {}", mem_info.0, mem_info.2);
        }
    }

    /// Evaluates dataset using network.
    ///
    /// Returns tuple: (Average cost across dataset, Number of examples correctly classified).
    /// ```
    /// # use ndarray::{Array2,array};
    /// # use cogent::{
    /// #     NeuralNetwork,Layer,
    /// #     Activation,
    /// #     EvaluationData
    /// # };
    /// #
    /// # let mut net = NeuralNetwork::new(2,&[
    /// #     Layer::Dense(3,Activation::Sigmoid),
    /// #     Layer::Dense(2,Activation::Softmax)
    /// # ]);
    /// #
    /// let mut data:Array2<f32> = array![[0.,0.],[1.,0.],[0.,1.],[1.,1.]];
    /// let mut labels:Array2<usize> = array![[0],[1],[1],[0]];
    /// #
    /// # net.train(&mut data.clone(),&mut labels.clone()) // `.clone()` neccessary to satisfy borrow checker concerning later immutable borrow as evaluation data.
    /// #    .learning_rate(2f32)
    /// #    .evaluation_data(EvaluationData::Actual(&data,&labels)) // Use testing data as evaluation data.
    /// # .go();
    /// // `net` is neural network trained to 100% accuracy to mimic an XOR gate.
    /// // Passing `None` for the cost uses the default cost function (crossentropy).
    /// let (cost,accuracy) = net.evaluate(&data,&labels,None);
    ///
    /// assert_eq!(accuracy,4);
    pub fn evaluate(
        &mut self,
        data: &ndarray::Array2<f32>,
        labels: &ndarray::Array2<usize>,
        cost: Option<&Cost>,
    ) -> (f32, u32) {
        if let Some(cost_function) = cost {
            return self.inner_evaluate(
                &self.matrixify(&data.view(), &labels.view()),
                &labels.view(),
                cost_function,
            );
        } else {
            return self.inner_evaluate(
                &self.matrixify(&data.view(), &labels.view()),
                &labels.view(),
                &Cost::Crossentropy,
            );
        }
    }
    // TODO Rewrite to accept `&ArrayViewMut2` and `&Array2` for `labels`
    /// Returns tuple: (Average cost across batch, Number of examples correctly classified).
    fn inner_evaluate(
        &mut self,
        (input, target): &(Array<f32>, Array<f32>),
        labels: &ArrayView2<usize>,
        cost: &Cost,
    ) -> (f32, u32) {
        // Forepropgatates input
        let output = self.inner_run(input);

        // Computes cost
        let cost: f32 = cost.run(target, &output);
        // Computes example output classes
        let output_classes = imax(&output, 0).1;

        // Sets array of target classes
        let target_classes: Vec<u32> = labels.axis_iter(Axis(0)).map(|x| x[0] as u32).collect();
        let number_of_examples = labels.len_of(Axis(0));
        let target_array = Array::<u32>::new(
            &target_classes,
            Dim4::new(&[1, number_of_examples as u64, 1, 1]),
        );

        // Gets number of correct classifications.
        let correct_classifications = eq(&output_classes, &target_array, false); // TODO Can this be a bitwise AND?
        let correct_classifications_numb: u32 = sum_all(&correct_classifications).0 as u32;

        // Returns average cost and number of examples correctly classified.
        return (
            cost / number_of_examples as f32,
            correct_classifications_numb,
        );
    }
    /// Returns tuple of: (Vector of class percentage accuracies, Percentage confusion matrix).
    /// ```
    /// # use ndarray::{Array2,array};
    /// # use cogent::{
    /// #     NeuralNetwork,Layer,
    /// #     Activation,
    /// #     EvaluationData
    /// # };
    /// #
    /// # let mut net = NeuralNetwork::new(2,&[
    /// #     Layer::Dense(3,Activation::Sigmoid),
    /// #     Layer::Dense(2,Activation::Softmax)
    /// # ]);
    /// #
    /// let mut data:Array2<f32> = array![[0.,0.],[1.,0.],[0.,1.],[1.,1.]];
    /// let mut labels:Array2<usize> = array![[0],[1],[1],[0]];
    /// #
    /// # net.train(&mut data.clone(),&mut labels.clone()) // `.clone()` neccessary to satisfy borrow checker concerning later immutable borrow for `analyze`.
    /// #    .learning_rate(2f32)
    /// #    .evaluation_data(EvaluationData::Actual(&data,&labels)) // Use testing data as evaluation data.
    /// # .go();
    /// // `net` is neural network trained to 100% accuracy to mimic an XOR gate.
    /// let (correct_vector,confusion_matrix) = net.analyze(&data,&labels);
    ///
    /// assert_eq!(correct_vector,vec![1f32,1f32]);
    /// assert_eq!(confusion_matrix,vec![[1f32,0f32],[0f32,1f32]]);
    /// ```
    // #[deprecated(
    //     note = "Not deprecated, just broken until ArrayFire update installer to match git (where issue has been reported and fixed)."
    // )]
    pub fn analyze(
        &mut self,
        data: &ndarray::Array2<f32>,
        labels: &ndarray::Array2<usize>,
    ) -> (Vec<f32>, Vec<Vec<f32>>) {
        // Gets number of network outputs
        let net_outs = match &self.layers[self.layers.len() - 1] {
            InnerLayer::Dense(dense_layer) => dense_layer.biases.dims().get()[0] as usize,
            _ => panic!("Last layer is somehow a dropout layer, this should not be possible"),
        };

        // Sorts by class labels
        let (sorted_data, sorted_labels) = counting_sort(data, labels, net_outs);

        let (input, classes) = matrixify_classes(&sorted_data, &sorted_labels);
        let outputs = self.inner_run(&input);

        let maxs: Array<f32> = arrayfire::max(&outputs, 0i32);

        let class_vectors: Array<bool> = eq(&outputs, &maxs, true);

        let confusion_matrix: Array<f32> =
            sum_by_key(&classes, &class_vectors, 1i32).1.cast::<f32>();

        let class_lengths: Array<f32> = sum(&confusion_matrix, 1i32); // Number of examples of each class

        let percent_confusion_matrix: Array<f32> = div(&confusion_matrix, &class_lengths, true); // Divides each row (example) by number of examples of that class.

        let dims = percent_confusion_matrix.dims();
        let mut flat_vec = vec![f32::default(); (dims.get()[0] * dims.get()[1]) as usize]; // dims.get()[0] == dims.get()[1]
                                                                                           // `x.host(...)` outputs in column-major order, calling `tranpose(x).host(...)` effectively outputs in row-major order.
        transpose(&percent_confusion_matrix, false).host(&mut flat_vec);
        let matrix_vec: Vec<Vec<f32>> = flat_vec
            .chunks(dims.get()[0] as usize)
            .map(|x| x.to_vec())
            .collect();

        // Gets diagonal from matrix, representing what percentage of examples where correctly identified as each class.
        let diag = diag_extract(&percent_confusion_matrix, 0i32);
        let mut diag_vec: Vec<f32> = vec![f32::default(); diag.dims().get()[0] as usize];
        diag.host(&mut diag_vec);

        return (diag_vec, matrix_vec);

        fn matrixify_classes(
            data: &ndarray::Array2<f32>,
            labels: &ndarray::Array2<usize>,
        ) -> (Array<f32>, Array<u32>) {
            let number_of_examples = data.len_of(Axis(0)) as u64;

            // Constructs input and output array
            let dims = Dim4::new(&[data.len_of(Axis(1)) as u64, number_of_examples, 1, 1]);
            let input = Array::new(&data.as_slice().unwrap(), dims);

            let labels_u32 = labels.mapv(|x| x as u32);
            let dims = Dim4::new(&[number_of_examples, 1, 1, 1]);
            let classes: Array<u32> = Array::<u32>::new(labels_u32.as_slice().unwrap(), dims);

            // Returns input and output array
            // Array(in,examples,1,1), Array(out,examples,1,1)
            return (input, classes);
        }
        fn counting_sort(
            data: &ndarray::Array2<f32>,
            labels: &ndarray::Array2<usize>,
            k: usize,
        ) -> (ndarray::Array2<f32>, ndarray::Array2<usize>) {
            let n = data.len_of(Axis(0)); // = labels.len_of(Axis(1))
            let mut count: Vec<usize> = vec![0usize; k];
            let mut output_vals: Vec<usize> = vec![0usize; n];

            for i in 0..n {
                let class = labels[[i, 0]];

                count[class] += 1usize;
                output_vals[i] = class;
            }
            for i in 1..count.len() {
                count[i] += count[i - 1];
            }

            let mut sorted_data = ndarray::Array2::from_elem(data.dim(), f32::default());
            let mut sorted_labels = ndarray::Array2::from_elem(labels.dim(), usize::default());

            for i in 0..n {
                set_row(i, count[output_vals[i]] - 1, data, &mut sorted_data);
                sorted_labels[[count[output_vals[i]] - 1, 0]] = labels[[i, 0]];
                count[output_vals[i]] -= 1;
            }

            return (sorted_data, sorted_labels);
        }
        // TODO Surely there must be a better way to do this? (Why is such a method not obvious in the ndarray docs?)
        fn set_row(
            from_index: usize,
            to_index: usize,
            from: &ndarray::Array2<f32>,
            to: &mut ndarray::Array2<f32>,
        ) {
            for i in 0..from.len_of(Axis(1)) {
                // TODO Double check `Axis(0)` (I mess it up a lot)
                to[[to_index, i]] = from[[from_index, i]];
            }
        }
    }

    /// Returns tuple of pretty strings of: (Vector of class percentage accuracies, Percentage confusion matrix).
    ///
    /// Example without dictionairy:
    /// ```
    /// # use ndarray::{Array2,array};
    /// # use cogent::{EvaluationData,MeasuredCondition,Activation,Layer,NeuralNetwork};
    /// #
    /// # let mut net = NeuralNetwork::new(2,&[
    /// #     Layer::Dense(3,Activation::Sigmoid),
    /// #     Layer::Dense(2,Activation::Softmax)
    /// # ]);
    /// #
    /// let mut data:Array2<f32> = array![[0.,0.],[1.,0.],[0.,1.],[1.,1.]];
    /// let mut labels:Array2<usize> = array![[0],[1],[1],[0]];
    ///
    /// # net.train(&mut data.clone(),&mut labels.clone()) // `.clone()` neccessary to satisfy borrow checker concerning later immutable borrow for `analyze_string`.
    /// #    .learning_rate(2f32)
    /// #    .evaluation_data(EvaluationData::Actual(&data,&labels)) // Use testing data as evaluation data.
    /// # .go();
    /// #
    /// // `net` is neural network trained to 100% accuracy to mimic an XOR gate.
    /// let (correct_vector,confusion_matrix) = net.analyze_string(&data,&labels,2,None);
    ///
    /// let expected_vector:&str =
    /// "    0    1   
    ///   ┌           ┐
    /// % │ 1.00 1.00 │
    ///   └           ┘\n";
    /// assert_eq!(&correct_vector,expected_vector);
    ///
    /// let expected_matrix:&str =
    /// "%   0    1   
    ///   ┌           ┐
    /// 0 │ 1.00 0.00 │
    /// 1 │ 0.00 1.00 │
    ///   └           ┘\n";
    /// assert_eq!(&confusion_matrix,expected_matrix);
    /// ```
    /// Example with dictionairy:
    /// ```
    /// # use ndarray::{Array2,array};
    /// # use cogent::{EvaluationData,MeasuredCondition,Activation,Layer,NeuralNetwork};
    /// # use std::collections::HashMap;
    /// #
    /// # let mut net = NeuralNetwork::new(2,&[
    /// #     Layer::Dense(3,Activation::Sigmoid),
    /// #     Layer::Dense(2,Activation::Softmax)
    /// # ]);
    /// #
    /// let mut data:Array2<f32> = array![[0.,0.],[1.,0.],[0.,1.],[1.,1.]];
    /// let mut labels:Array2<usize> = array![[0],[1],[1],[0]];
    ///
    /// # net.train(&mut data.clone(),&mut labels.clone()) // `.clone()` neccessary to satisfy borrow checker concerning later immutable borrow for `analyze_string`.
    /// #    .learning_rate(2f32)
    /// #    .evaluation_data(EvaluationData::Actual(&data,&labels)) // Use testing data as evaluation data.
    /// # .go();
    /// #
    /// let mut dictionairy:HashMap<usize,&str> = HashMap::new();
    /// dictionairy.insert(0,"False");
    /// dictionairy.insert(1,"True");
    ///
    /// // `net` is neural network trained to 100% accuracy to mimic an XOR gate.
    /// let (correct_vector,confusion_matrix) = net.analyze_string(&data,&labels,2,Some(dictionairy));
    ///
    /// let expected_vector:&str =
    /// "     False True
    ///   ┌              ┐
    /// % │  1.00  1.00  │
    ///   └              ┘\n";
    /// assert_eq!(&correct_vector,expected_vector);
    ///
    /// let expected_matrix:&str =
    /// "    %    False True
    ///       ┌              ┐
    /// False │  1.00  0.00  │
    ///  True │  0.00  1.00  │
    ///       └              ┘\n";
    /// assert_eq!(&confusion_matrix,expected_matrix);
    /// ```
    // #[deprecated(
    //     note = "Not deprecated, just broken until ArrayFire update installer to match git (where issue has been reported and fixed)."
    // )]
    pub fn analyze_string(
        &mut self,
        data: &ndarray::Array2<f32>,
        labels: &ndarray::Array2<usize>,
        precision: usize,
        dict_opt: Option<HashMap<usize, &str>>,
    ) -> (String, String) {
        let (vector, matrix) = self.analyze(data, labels);

        let class_outs = match &self.layers[self.layers.len() - 1] {
            InnerLayer::Dense(dense_layer) => dense_layer.biases.dims().get()[0] as usize,
            _ => panic!("Last layer is somehow a dropout layer, this should not be possible"),
        };

        let classes: Vec<String> = if let Some(dictionary) = dict_opt {
            (0..class_outs)
                .map(
                    |class| {
                        if let Some(label) = dictionary.get(&class) {
                            String::from(*label)
                        } else {
                            format!("{}", class)
                        }
                    }, // TODO Do this conversion better
                )
                .collect()
        } else {
            (0..class_outs).map(|class| format!("{}", class)).collect() // TODO See above todo
        };

        let widest_class: usize = classes
            .iter()
            .fold(1usize, |max, x| std::cmp::max(max, x.chars().count()));
        let class_spacing: usize = std::cmp::max(precision + 2, widest_class);

        let vector_string = vector_string(&vector, &classes, precision, class_spacing);
        let matrix_string =
            matrix_string(&matrix, &classes, precision, widest_class, class_spacing);

        return (vector_string, matrix_string);

        fn vector_string(
            vector: &Vec<f32>,
            classes: &Vec<String>,
            precision: usize,
            spacing: usize,
        ) -> String {
            let mut string = String::new(); // TODO Change this to `::with_capacity();`

            let precision_width = precision + 2;
            let space_between_vals = spacing - precision_width + 1;
            let row_width = ((spacing + 1) * vector.len()) + space_between_vals;

            string.push_str(&format!("  {:1$}", "", space_between_vals));
            for class in classes {
                string.push_str(&format!(" {:1$}", class, spacing));
            }
            string.push_str("\n");
            string.push_str(&format!("{:1$}", "", 2));
            string.push_str(&format!("┌{:1$}┐\n", "", row_width));
            string.push_str(&format!("% │{:1$}", "", space_between_vals));
            for val in vector {
                string.push_str(&format!("{:.1$}", val, precision));
                string.push_str(&format!("{:1$}", "", space_between_vals))
            }
            string.push_str("│\n");
            string.push_str(&format!("{:1$}", "", 2));
            string.push_str(&format!("└{:1$}┘\n", "", row_width));

            return string;
        }
        fn matrix_string(
            matrix: &Vec<Vec<f32>>,
            classes: &Vec<String>,
            precision: usize,
            class_width: usize,
            spacing: usize,
        ) -> String {
            let mut string = String::new(); // TODO Change this to `::with_capacity();`
            let precision_width = precision + 2;
            let space_between_vals = spacing - precision_width + 1;
            let row_width = ((spacing + 1) * matrix[0].len()) + space_between_vals;

            string.push_str(&format!(
                "{:2$}% {:3$}",
                "",
                "",
                class_width - 1,
                space_between_vals
            ));

            for class in classes {
                string.push_str(&format!(" {:1$}", class, spacing));
            }
            string.push_str("\n");

            string.push_str(&format!("{:2$} ┌{:3$}┐\n", "", "", class_width, row_width));

            for i in 0..matrix.len() {
                string.push_str(&format!(
                    "{: >2$} │{:3$}",
                    classes[i], "", class_width, space_between_vals
                ));
                for val in matrix[i].iter() {
                    string.push_str(&format!("{:.1$}", val, precision));
                    string.push_str(&format!("{:1$}", "", space_between_vals))
                }
                string.push_str("│\n");
            }
            string.push_str(&format!("{:2$} └{:3$}┘\n", "", "", class_width, row_width));

            return string;
        }
    }
    // TODO Document this better
    // TODO Rewrite to accept `&ArrayView2`s and `&Array2`s
    // Convert ndarray arrays to arrayfire arrays.
    fn matrixify(
        &self,
        data: &ArrayView2<f32>,
        labels: &ArrayView2<usize>,
    ) -> (Array<f32>, Array<f32>) {
        // TODO Is there a better way to do either of these?
        // Flattens examples into `in_vec` and `out_vec`
        let net_outs = match &self.layers[self.layers.len() - 1] {
            InnerLayer::Dense(dense_layer) => dense_layer.biases.dims().get()[0] as usize,
            _ => panic!("Last layer is somehow a dropout layer, this should not be possible"),
        };

        let number_of_examples = data.len_of(Axis(0)) as u64;

        // Constructs input and output array
        let dims = Dim4::new(&[data.len_of(Axis(1)) as u64, number_of_examples, 1, 1]);
        let input = arrayfire::Array::new(&data.as_slice().unwrap(), dims);

        // Creates all possible target vecs to be cloned when needed.
        let mut target_vecs: Vec<Vec<f32>> = vec![vec!(0.; net_outs); net_outs];
        for i in 0..net_outs {
            target_vecs[i][i] = 1.;
        }

        let flat_labels: Vec<f32> = labels
            .axis_iter(Axis(0))
            .map(|label| target_vecs[label[0]].clone())
            .flatten()
            .collect();

        let target: Array<f32> = Array::<f32>::new(
            &flat_labels,
            Dim4::new(&[net_outs as u64, number_of_examples, 1, 1]),
        );

        // Returns input and output array
        // Array(in,examples,1,1), Array(out,examples,1,1)
        return (input, target);
    }
    // Returns Instant::elapsed() as hh:mm:ss string.
    fn time(instant: Instant) -> String {
        let mut seconds = instant.elapsed().as_secs();
        let hours = (seconds as f32 / 3600f32).floor();
        seconds = seconds % 3600;
        let minutes = (seconds as f32 / 60f32).floor();
        seconds = seconds % 60;
        let time = format!("{:#02}:{:#02}:{:#02}", hours, minutes, seconds);
        return time;
    }
    /// Exports neural network to `path.json`.
    /// ```ignore
    /// use cogent::{Activation,Layer,NeuralNetwork};
    ///
    /// let net = NeuralNetwork::new(2,&[
    ///     Layer::new(3,Activation::Sigmoid),
    ///     Layer::new(2,Activation::Softmax)
    /// ]);
    ///
    /// net.export("my_neural_network");
    /// ```
    pub fn export(&self, path: &str) {
        let mut layers: Vec<InnerLayerEnum> = Vec::with_capacity(self.layers.len() - 1);

        for layer in self.layers.iter() {
            layers.push(match layer {
                InnerLayer::Dropout(dropout_layer) => InnerLayerEnum::Dropout(dropout_layer.p),
                InnerLayer::Dense(dense_layer) => {
                    let mut bias_holder = vec![f32::default(); dense_layer.biases.elements()];
                    let mut weight_holder = vec![f32::default(); dense_layer.weights.elements()];
                    dense_layer.biases.host(&mut bias_holder);
                    dense_layer.weights.host(&mut weight_holder);
                    InnerLayerEnum::Dense(
                        dense_layer.activation,
                        *dense_layer.biases.dims().get(),
                        bias_holder,
                        *dense_layer.weights.dims().get(),
                        weight_holder,
                    )
                }
            });
        }

        let export_struct = ImportExportNet {
            inputs: self.inputs,
            layers,
        };

        let file = File::create(format!("{}.json", path));
        let serialized: String = serde_json::to_string(&export_struct).unwrap();
        file.unwrap().write_all(serialized.as_bytes()).unwrap();
    }
    /// Imports neural network from `path.json`.
    /// ```ignore
    /// use cogent::NeuralNetwork;
    /// let net = NeuralNetwork::import("my_neural_network");
    /// ```
    pub fn import(path: &str) -> NeuralNetwork {
        let file = File::open(format!("{}.json", path));
        let mut string_contents: String = String::new();
        file.unwrap().read_to_string(&mut string_contents).unwrap();
        let import_struct: ImportExportNet = serde_json::from_str(&string_contents).unwrap();

        let mut layers: Vec<InnerLayer> = Vec::with_capacity(import_struct.layers.len());

        for layer in import_struct.layers {
            layers.push(match layer {
                InnerLayerEnum::Dropout(p) => InnerLayer::Dropout(DropoutLayer::new(p)),
                InnerLayerEnum::Dense(activation, b_dims, biases, w_dims, weights) => {
                    InnerLayer::Dense(DenseLayer {
                        activation,
                        biases: Array::new(&biases, Dim4::new(&b_dims)),
                        weights: Array::new(&weights, Dim4::new(&w_dims)),
                    })
                }
            });
        }

        return NeuralNetwork {
            inputs: import_struct.inputs,
            layers,
        };
    }
}

/// Strcut used to import/export neural net.
#[derive(Serialize, Deserialize)]
struct ImportExportNet {
    inputs: u64,
    layers: Vec<InnerLayerEnum>,
}
// Defines layers for import/export struct.
#[derive(Serialize, Deserialize)]
enum InnerLayerEnum {
    Dropout(f32),
    Dense(Activation, [u64; 4], Vec<f32>, [u64; 4], Vec<f32>),
}

// TODO Can this be consended with `trainer::shuffle_dataset(..)`?
fn shuffle_dataset(data: &mut ArrayViewMut2<f32>, labels: &mut ArrayViewMut2<usize>) {
    let examples = data.len_of(Axis(0));
    let input_size = data.len_of(Axis(1));

    let mut data_slice = data.as_slice_mut().unwrap();
    let mut label_slice = labels.as_slice_mut().unwrap();

    for i in 0..examples - 1 {
        let new_index: usize = thread_rng().gen_range(i, examples);

        let (data_indx_1, data_indx_2) = (i * input_size, new_index * input_size);
        // TODO Can we swap slices better?
        for t in 0..input_size {
            swap(&mut data_slice, data_indx_1 + t, data_indx_2 + t);
        }
        swap(&mut label_slice, i, new_index);
    }

    fn swap<T: Copy>(list: &mut [T], a: usize, b: usize) {
        let temp = list[a];
        list[a] = list[b];
        list[b] = temp;
    }
}