1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::ops::Range;

use anyhow::{anyhow, Context, Result};
use tree_sitter::{Node, Query, QueryCursor, Tree, TreeCursor};

#[derive(PartialEq, Eq, Clone, Hash, Debug)]
pub struct BlockTree<'tree> {
    pub block: Block<'tree>,
    pub children: Vec<BlockTree<'tree>>,
}

#[derive(PartialEq, Eq, Clone, Hash, Debug)]
pub struct Block<'tree> {
    nodes: Vec<Node<'tree>>,
}

impl<'tree> Block<'tree> {
    pub fn new(nodes: Vec<Node<'tree>>) -> Result<Self> {
        if nodes.is_empty() {
            Err(anyhow!("Can't create block empty nodes vec"))
        } else {
            Ok(Self { nodes })
        }
    }

    pub fn head(&self) -> &Node<'tree> {
        self.nodes.first().expect("empty nodes vec")
    }

    pub fn tail(&self) -> &Node<'tree> {
        self.nodes.last().expect("empty nodes vec")
    }

    pub fn head_tail(&self) -> (&Node<'tree>, &Node<'tree>) {
        (self.head(), self.tail())
    }

    pub fn byte_range(&self) -> Range<usize> {
        self.head().start_byte()..self.tail().end_byte()
    }
}

pub fn get_query_subtrees<'tree>(
    queries: &[Query],
    tree: &'tree Tree,
    text: &str,
) -> Vec<BlockTree<'tree>> {
    let mut blocks = get_blocks(queries, tree, text);

    build_block_tree(&mut blocks, &mut tree.walk())
}

pub fn move_block<'tree>(
    src_block: Block<'tree>,
    dst_block: Block<'tree>,
    text: &str,
    assert_move_legal_fn: Option<impl Fn(&Block, &Block) -> Result<()>>,
    force: bool,
) -> Result<String> {
    if !force {
        if let Some(move_is_legal) = assert_move_legal_fn {
            move_is_legal(&src_block, &dst_block).context("Illegal move operation")?;
        }
    }

    let (src_head, src_tail) = src_block.head_tail();
    let (dst_head, dst_tail) = dst_block.head_tail();
    let src_block_range = src_block.byte_range();

    if src_head.start_position() == dst_head.start_position() {
        return Ok(text.to_string());
    }

    let mut new_text = text.to_string();

    let src_text = &text[src_block_range.clone()];

    let spaces = [
        src_head
            .prev_sibling()
            .map(|s| &text[s.end_byte()..src_head.start_byte()]),
        src_tail
            .next_sibling()
            .map(|s| &text[src_tail.end_byte()..s.start_byte()]),
        dst_head
            .prev_sibling()
            .map(|s| &text[s.end_byte()..dst_head.start_byte()]),
        dst_tail
            .next_sibling()
            .map(|s| &text[dst_tail.end_byte()..s.start_byte()]),
    ];

    let max_space = spaces
        .into_iter()
        .flatten()
        .max_by(|s1, s2| s1.len().cmp(&s2.len()))
        .unwrap_or_default();

    let src_range = match (src_head.prev_sibling(), src_tail.next_sibling()) {
        (Some(p), Some(n)) => {
            let p_space = p.end_byte()..src_tail.end_byte();
            let n_space = src_head.start_byte()..n.start_byte();

            if p_space.len() >= n_space.len() {
                p_space
            } else {
                n_space
            }
        }
        (None, Some(n)) => src_head.start_byte()..n.start_byte(),
        (Some(p), None) => p.end_byte()..src_tail.end_byte(),
        (None, None) => src_block_range,
    };

    // move src to be below dst
    // move down
    if src_head.end_byte() < dst_head.end_byte() {
        new_text.insert_str(dst_tail.end_byte(), src_text);
        new_text.insert_str(dst_tail.end_byte(), max_space);
        new_text.replace_range(src_range, "");
    }
    // move up
    else {
        new_text.replace_range(src_range, "");
        new_text.insert_str(dst_tail.end_byte(), src_text);
        new_text.insert_str(dst_tail.end_byte(), max_space);
    }

    Ok(new_text)
}

fn get_blocks<'tree>(queries: &[Query], tree: &'tree Tree, text: &str) -> Vec<Block<'tree>> {
    let mut blocks = vec![];

    for query in queries {
        let mut query_cursor = QueryCursor::new();
        let captures = query_cursor.captures(query, tree.root_node(), text.as_bytes());

        for (q_match, index) in captures {
            if index != 0 {
                continue;
            }

            let mut block = vec![];
            for capture in q_match.captures {
                block.push((capture.index, capture.node));
            }

            block.sort_by(|(i1, _), (i2, _)| i1.cmp(i2));

            let nodes = block.into_iter().map(|(_, n)| n).collect::<Vec<_>>();

            blocks.push(Block { nodes });
        }
    }

    blocks
}

fn build_block_tree<'tree>(
    blocks: &mut Vec<Block<'tree>>,
    cursor: &mut TreeCursor<'tree>,
) -> Vec<BlockTree<'tree>> {
    let node = cursor.node();
    let mut trees = vec![];

    if cursor.goto_first_child() {
        let mut children = build_block_tree(blocks, cursor);

        if let Some(index) = blocks.iter().position(|b| b.tail() == &node) {
            let block = blocks.remove(index);
            trees.push(BlockTree { block, children });
        } else {
            trees.append(&mut children);
        }

        cursor.goto_parent();
    }

    if cursor.goto_next_sibling() {
        trees.append(&mut build_block_tree(blocks, cursor));
    }

    trees
}