cnfgen 0.6.2

Generate DIMACS CNF formula from operations
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
// mod.rs - integer expression structures.

#![cfg_attr(docsrs, feature(doc_cfg))]
//! The module to generate CNF clauses from integer expressions.
//!
//! This module contains traits and main structure to operate on integer expressions:
//! `IntExprNode`. An IntExprNode just holds boolean expression for every bit of integer.
//! You can use defined type of IntExprNode or just define your integer by supplying
//! generic parameters.
//!
//! Three generic parameters determine type of IntExprNode.
//! The first T parameter is just variable literal type - it can be omitted.
//! The second parameter is typed integer (from typenum crate) that determine number of bits
//! of integer. The last parameter is sign - true if signed integer or false if unsigned integer.
//! Type of IntExprNode can be written in form: `IntExprNode<i32, U12, false>` -
//! IntExprNode for 12-bit unsigned integer with 32-bit variable literals.
//!
//! ## Operations on expression nodes.
//!
//! An IntExprNode provides many operations:
//!
//! * equality - returns true if two expressions are equal.
//! * inequalities - less, less or equal, greater, greater or equal.
//! * absolute value - `abs()` only for signed IntExprNode.
//! * bitwise arithmentic - bitwise AND, OR, XOR and NOT by using standard operators.
//! * modular arithmetic - addition, subtraction, negation, multiplication.
//! * conditional arithmentic - modular arithmentic that provides condition.
//! * shifts - left and right shifts.
//! * conditional shifts - left and right.
//! * full multiplication - full multiplication that returns full product.
//! * division and remainder (modulo) - returns quotient, remainder and required condition.
//! * counting bits.
//! * counting leading and trailing ones and zeroes.
//!
//! Many operations are defined through additional traits in this module.
//! These traits and basic operations are implemented for expression nodes and integers -
//! it possible to use integer as self or as an argument with expression node like:
//! `332.mod_mul(x1)`. The method `constant` provide simple way to convert integer
//! into an expression node (IntExprNode).
//!
//! The simple example of usage:
//! ```
//! use cnfgen::boolexpr::*;
//! use cnfgen::intexpr::*;
//! use cnfgen::writer::{CNFError, CNFWriter};
//! use std::io;
//! fn write_diophantine_equation() -> Result<(), CNFError> {
//!     // define ExprCreator.
//!     let creator = ExprCreator32::new();
//!     // define variables - signed 32-bit wide.
//!     let x = I32ExprNode::variable(creator.clone());
//!     let y = I32ExprNode::variable(creator.clone());
//!     let z = I32ExprNode::variable(creator.clone());
//!     // define equation: x^2 + y^2 - 77*z^2 = 0
//!     let powx = x.clone().fullmul(x);  // x^2
//!     let powy = y.clone().fullmul(y);  // y^2
//!     let powz = z.clone().fullmul(z);  // z^2
//!     // We use cond_mul to get product and required condition to avoid overflow.
//!     let (prod, cond0) = powz.cond_mul(77i64);
//!     // Similary, we use conditional addition and conditional subtraction.
//!     let (sum1, cond1) = powx.cond_add(powy);
//!     let (diff2, cond2) = sum1.cond_sub(prod);
//!     // define final formula with required conditions.
//!     let formula: BoolExprNode<_> = diff2.equal(0) & cond0 & cond1 & cond2;
//!     // write CNF to stdout.
//!     formula.write(&mut CNFWriter::new(io::stdout()))
//! }
//! ```
//!
//! ## Conditional operations.
//!
//! Conditional operations defined by `IntCondXXX` traits is specific type of operations that
//! provide additional condition as an boolean expression. This condition is satisfiable when
//! no overflow encountered while evaluating operation. It can supplied at root of final
//! expression to force evaluate an operation without unexpected overflow like in this
//! simple example that generates diophantic equation.
//!
//! The condition in conditional shifting
//! just will be satisfied when shift (right argument) value is lower than number of
//! bits of left argument.
//!
//! Division and remainder just returns additional condition that will be satisified if
//! right argument is not zero.
//!
//! ## Conversion between types.
//!
//! It is possible conversion between various IntExprNodes that have various sizes and signs.
//! Conversions are implemented by using standard `From` and `TryFrom` traits.
//! Conversion from lesser IntExprNode into greater IntExprNode if source are unsigned.
//!
//! ## Other operations.
//!
//! IntExprNode provides other operations like concatenation of bits, splitting into two
//! shorter IntExprNodes, casting to signed or unsigned and selection of bits of IntExprNodes.

use std::cell::RefCell;
use std::cmp;
use std::fmt::Debug;
use std::iter;
use std::ops::{Add, BitAnd, BitOr, Neg, Not, Sub};
use std::rc::Rc;

use generic_array::typenum::*;
use generic_array::*;

use crate::boolexpr::{bool_ite, bool_opt_ite, half_adder, BoolExprNode};
pub use crate::boolexpr_creator::{ExprCreator, ExprCreator32, ExprCreatorSys};
use crate::dynintexpr::DynIntExprNode;
use crate::int_utils::*;
use crate::writer::{Literal, VarLit};
use crate::{impl_int_bitop_assign, impl_int_ty1_lt_ty2};

/// Integer error.
#[derive(thiserror::Error, Debug)]
pub enum IntError {
    /// If bit overflow - too many bits required.
    #[error("Bit overflow")]
    BitOverflow,
    /// A value can be negative - it can be happened when convert signed value into unsigned.
    #[error("Value can be negative")]
    CanBeNegative,
    /// If bits number if mismatch for example: while conversion from DynIntExprNode.
    #[error("Bit number mismatch")]
    BitsMismatch,
}

pub mod traits;
pub use traits::*;
pub mod bin_arith;
pub use bin_arith::*;
pub mod int_arith;
pub use int_arith::*;
pub mod extra_arith;
pub use extra_arith::*;

/// The main structure that represents integer expression, subexpression or integer value.
///
/// It joined with the ExprCreator that holds all expressions.
/// Creation of new expression is naturally simple thanks operators. However, expression nodes
/// must be cloned before using in other expressions if they will be used more than once.
/// Simple examples:
///
/// * `(x1 << x2).mod_add(x3.clone()).equal(x3)`
/// * `x1.clone().fullmul(x1).mod_add(x2.clone().fullmul(x2))`
///
/// Integer expression nodes can be used with integer values or variables that will represents
/// constant integer value in an expression. Simple example: `4u8<<x1`.
/// Due to some limitations only some configurations of integer size and IntExprNode sizes
/// are possible.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct IntExprNode<T: VarLit + Debug, N: ArrayLength<usize>, const SIGN: bool> {
    pub(super) creator: Rc<RefCell<ExprCreator<T>>>,
    pub(super) indexes: GenericArray<usize, N>,
}

impl<T, N: ArrayLength<usize>, const SIGN: bool> IntExprNode<T, N, SIGN>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
{
    /// Number of BITS.
    pub const BITS: usize = N::USIZE;
    /// SIGN of integer. It can be false - unsigned, or true - signed.
    pub const SIGN: bool = SIGN;
    /// Internally used logarithm of number of bits.
    pub const LOG_BITS: usize = calc_log_bits(Self::BITS);

    /// Creates new variable as expression node.
    pub fn variable(creator: Rc<RefCell<ExprCreator<T>>>) -> Self {
        let mut indexes = GenericArray::<usize, N>::default();
        {
            let mut creator = creator.borrow_mut();
            indexes.iter_mut().for_each(|x| {
                let l = creator.new_variable();
                *x = creator.single(l);
            });
        }
        IntExprNode { creator, indexes }
    }

    /// Creates integer from boolean expressions. An argument is object convertible into
    /// iterator of `BoolExprNode`.
    pub fn from_boolexprs(iter: impl IntoIterator<Item = BoolExprNode<T>>) -> Option<Self> {
        let mut creator = None;
        GenericArray::from_exact_iter(iter.into_iter().map(|x| {
            // check creator - whether this same
            if let Some(c) = creator.clone() {
                assert_eq!(Rc::as_ptr(&c), Rc::as_ptr(&x.creator));
            } else {
                creator = Some(x.creator.clone());
            }
            x.index
        }))
        .map(|indexes| IntExprNode {
            creator: creator.unwrap(),
            indexes,
        })
    }

    /// Creates filled integer from from Literal.
    pub fn filled(creator: Rc<RefCell<ExprCreator<T>>>, v: impl Into<Literal<T>>) -> Self {
        IntExprNode {
            creator: creator.clone(),
            indexes: GenericArray::from_exact_iter(
                iter::repeat(creator.borrow_mut().single(v)).take(N::USIZE),
            )
            .unwrap(),
        }
    }

    /// Creates filled integer from from a boolean value.
    pub fn filled_expr(v: BoolExprNode<T>) -> Self {
        IntExprNode {
            creator: v.creator.clone(),
            indexes: GenericArray::from_exact_iter(iter::repeat(v.index).take(N::USIZE)).unwrap(),
        }
    }

    /// Casts integer into unsigned integer.
    pub fn as_unsigned(self) -> IntExprNode<T, N, false> {
        IntExprNode {
            creator: self.creator,
            indexes: self.indexes,
        }
    }

    /// Casts integer into signed integer.
    pub fn as_signed(self) -> IntExprNode<T, N, true> {
        IntExprNode {
            creator: self.creator,
            indexes: self.indexes,
        }
    }
}

impl<T, N: ArrayLength<usize>> IntExprNode<T, N, false>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
{
    /// Creates integer that contains `N2` bits starting from `start`.
    pub fn subvalue<N2>(&self, start: usize) -> IntExprNode<T, N2, false>
    where
        N2: ArrayLength<usize>,
    {
        IntExprNode {
            creator: self.creator.clone(),
            indexes: GenericArray::clone_from_slice(&self.indexes[start..start + N2::USIZE]),
        }
    }

    /// Creates integer that contains `N2` selected bits. List of bits given in
    /// object that can be converted into iterator of indexes. It returns None if
    /// number of elements in iterator doesn't match.
    pub fn select_bits<N2, I>(&self, iter: I) -> Option<IntExprNode<T, N2, false>>
    where
        N2: ArrayLength<usize>,
        I: IntoIterator<Item = usize>,
    {
        GenericArray::from_exact_iter(iter.into_iter().map(|x| self.indexes[x])).map(|indexes| {
            IntExprNode {
                creator: self.creator.clone(),
                indexes,
            }
        })
    }

    /// Creates integer of concatenation of self and `rest`.
    pub fn concat<N2>(self, rest: IntExprNode<T, N2, false>) -> IntExprNode<T, Sum<N, N2>, false>
    where
        N: Add<N2>,
        N2: ArrayLength<usize>,
        Sum<N, N2>: ArrayLength<usize>,
    {
        use generic_array::sequence::*;
        assert_eq!(Rc::as_ptr(&self.creator), Rc::as_ptr(&rest.creator));
        IntExprNode {
            creator: self.creator,
            indexes: self.indexes.concat(rest.indexes),
        }
    }

    /// Splits integer into two parts: the first with `K` bits and second with rest of bits.
    pub fn split<K>(
        self,
    ) -> (
        IntExprNode<T, K, false>,
        IntExprNode<T, operator_aliases::Diff<N, K>, false>,
    )
    where
        N: Sub<K>,
        K: ArrayLength<usize>,
        operator_aliases::Diff<N, K>: ArrayLength<usize>,
    {
        use generic_array::sequence::*;
        let (indexes1, indexes2) = self.indexes.split();
        (
            IntExprNode {
                creator: self.creator.clone(),
                indexes: indexes1,
            },
            IntExprNode {
                creator: self.creator,
                indexes: indexes2,
            },
        )
    }
}

// TryFrom implementation
macro_rules! impl_int_try_from {
    ($ty1:ty, $ty2: ty, $($gparams:ident),*) => {
        impl<T: VarLit, const SIGN2: bool, $( $gparams ),* >
                TryFrom<IntExprNode<T, $ty2, SIGN2>> for IntExprNode<T, $ty1, false>
        where
            $ty1: ArrayLength<usize>,
            $ty2: ArrayLength<usize>,
        {
            type Error = IntError;

            fn try_from(v: IntExprNode<T, $ty2, SIGN2>) -> Result<Self, Self::Error> {
                let len1 = <$ty1>::USIZE;
                // if all rest of bits are 0 - just false
                if !v.indexes.iter().skip(len1).all(|x| *x==0) {
                    return Err(IntError::BitOverflow);
                }
                Ok(IntExprNode::<T, $ty1, false>{ creator: v.creator.clone(),
                    indexes: GenericArray::clone_from_slice(&v.indexes[0..len1]) })
            }
        }

        impl<T: VarLit, $( $gparams ),* >
                TryFrom<IntExprNode<T, $ty2, false>> for IntExprNode<T, $ty1, true>
        where
            $ty1: ArrayLength<usize>,
            $ty2: ArrayLength<usize>,
        {
            type Error = IntError;

            fn try_from(v: IntExprNode<T, $ty2, false>) -> Result<Self, Self::Error> {
                let len1 = <$ty1>::USIZE;
                // if all rest of bits are 0 - just false
                if !v.indexes.iter().skip(len1-1).all(|x| *x==0) {
                    return Err(IntError::BitOverflow);
                }
                Ok(IntExprNode::<T, $ty1, true>{ creator: v.creator.clone(),
                    indexes: GenericArray::clone_from_slice(&v.indexes[0..len1]) })
            }
        }

        impl<T: VarLit, $( $gparams ),* >
                TryFrom<IntExprNode<T, $ty2, true>> for IntExprNode<T, $ty1, true>
        where
            $ty1: ArrayLength<usize>,
            $ty2: ArrayLength<usize>,
        {
            type Error = IntError;

            fn try_from(v: IntExprNode<T, $ty2, true>) -> Result<Self, Self::Error> {
                let len1 = <$ty1>::USIZE;
                let last_idx = v.indexes[len1-1];
                if !v.indexes.iter().skip(len1).all(|x| last_idx==*x) {
                    return Err(IntError::BitOverflow);
                }
                Ok(IntExprNode::<T, $ty1, true>{ creator: v.creator.clone(),
                    indexes: GenericArray::clone_from_slice(&v.indexes[0..len1]) })
            }
        }

        // try from for rest
        impl<T: VarLit, $( $gparams ),* >
                TryFrom<IntExprNode<T, $ty1, true>> for IntExprNode<T, $ty2, false>
        where
            $ty1: ArrayLength<usize>,
            $ty2: ArrayLength<usize>,
        {
            type Error = IntError;

            fn try_from(v: IntExprNode<T, $ty1, true>) -> Result<Self, Self::Error> {
                if *v.indexes.last().unwrap() != 0 {
                    return Err(IntError::CanBeNegative); // if minus
                }
                // default is zero - then is false - zero bit value
                let mut new_v = IntExprNode::<T, $ty2, false>{ creator: v.creator.clone(),
                    indexes: GenericArray::default() };
                new_v.indexes[0..v.indexes.len()].copy_from_slice(v.indexes.as_slice());
                Ok(new_v)
            }
        }
    }
}

impl_int_ty1_lt_ty2!(impl_int_try_from);

impl<T: VarLit, N: ArrayLength<usize>> TryFrom<IntExprNode<T, N, false>>
    for IntExprNode<T, N, true>
{
    type Error = IntError;

    fn try_from(v: IntExprNode<T, N, false>) -> Result<Self, Self::Error> {
        if *v.indexes.last().unwrap() != 0 {
            // if input if higher than possible output
            return Err(IntError::BitOverflow);
        }
        Ok(IntExprNode {
            creator: v.creator,
            indexes: v.indexes,
        })
    }
}

impl<T: VarLit, N: ArrayLength<usize>> TryFrom<IntExprNode<T, N, true>>
    for IntExprNode<T, N, false>
{
    type Error = IntError;

    fn try_from(v: IntExprNode<T, N, true>) -> Result<Self, Self::Error> {
        if *v.indexes.last().unwrap() != 0 {
            // if input is lower than 0
            return Err(IntError::CanBeNegative);
        }
        Ok(IntExprNode {
            creator: v.creator,
            indexes: v.indexes,
        })
    }
}

impl<T: VarLit, N: ArrayLength<usize>, const SIGN: bool> TryFrom<DynIntExprNode<T, SIGN>>
    for IntExprNode<T, N, SIGN>
{
    type Error = IntError;

    fn try_from(v: DynIntExprNode<T, SIGN>) -> Result<Self, Self::Error> {
        if N::USIZE != v.indexes.len() {
            return Err(IntError::BitsMismatch);
        }
        Ok(IntExprNode {
            creator: v.creator,
            indexes: GenericArray::clone_from_slice(&v.indexes),
        })
    }
}

// From implementation
macro_rules! impl_int_from {
    ($ty1:ty, $ty2: ty, $($gparams:ident),*) => {
        impl<T: VarLit, const SIGN2: bool, $( $gparams ),* >
                From<IntExprNode<T, $ty1, false>> for IntExprNode<T, $ty2, SIGN2>
            where
                $ty1: ArrayLength<usize>,
                $ty2: ArrayLength<usize>, {
            fn from(v: IntExprNode<T, $ty1, false>) -> Self {
                // default is zero - then is false - zero bit value
                let mut new_v = IntExprNode::<T, $ty2, SIGN2>{ creator: v.creator.clone(),
                    indexes: GenericArray::default() };
                new_v.indexes[0..v.indexes.len()].copy_from_slice(v.indexes.as_slice());
                new_v
            }
        }

        impl<T: VarLit, $( $gparams ),* >
                From<IntExprNode<T, $ty1, true>> for IntExprNode<T, $ty2, true>
            where
                $ty1: ArrayLength<usize>,
                $ty2: ArrayLength<usize>, {
            fn from(v: IntExprNode<T, $ty1, true>) -> Self {
                // default is zero - then is false - zero bit value
                let len = <$ty1>::USIZE;
                let mut new_v = IntExprNode::<T, $ty2, true>{ creator: v.creator.clone(),
                    indexes: GenericArray::default() };
                new_v.indexes[0..len].copy_from_slice(v.indexes.as_slice());
                let last = *v.indexes.last().unwrap();
                // copy sign to rest
                new_v.indexes[len..].iter_mut().for_each(|x| *x = last);
                new_v
            }
        }
    }
}

impl_int_ty1_lt_ty2!(impl_int_from);

impl<T: VarLit, N, const SIGN: bool> From<BoolExprNode<T>> for IntExprNode<T, N, SIGN>
where
    N: ArrayLength<usize>,
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
{
    /// Put boolean as first bit of integer.
    fn from(v: BoolExprNode<T>) -> Self {
        assert_ne!(N::USIZE, 0);
        let ec = v.creator.clone();
        Self::from_boolexprs(
            std::iter::once(v)
                .chain((0..N::USIZE - 1).map(|_| BoolExprNode::single_value(ec.clone(), false))),
        )
        .unwrap()
    }
}

// types

/// IntExprNode for unsinged 8-bit integer.
pub type U8ExprNode<T> = IntExprNode<T, U8, false>;
/// IntExprNode for unsinged 16-bit integer.
pub type U16ExprNode<T> = IntExprNode<T, U16, false>;
/// IntExprNode for unsinged 32-bit integer.
pub type U32ExprNode<T> = IntExprNode<T, U32, false>;
/// IntExprNode for unsinged 64-bit integer.
pub type U64ExprNode<T> = IntExprNode<T, U64, false>;
/// IntExprNode for unsinged 128-bit integer.
pub type U128ExprNode<T> = IntExprNode<T, U128, false>;

/// IntExprNode for unsinged integer with various size.
pub type UExprNode<T, N> = IntExprNode<T, N, false>;
/// IntExprNode for singed integer with various size.
pub type IExprNode<T, N> = IntExprNode<T, N, true>;

/// IntExprNode for singed 8-bit integer.
pub type I8ExprNode<T> = IntExprNode<T, U8, true>;
/// IntExprNode for singed 16-bit integer.
pub type I16ExprNode<T> = IntExprNode<T, U16, true>;
/// IntExprNode for singed 32-bit integer.
pub type I32ExprNode<T> = IntExprNode<T, U32, true>;
/// IntExprNode for singed 64-bit integer.
pub type I64ExprNode<T> = IntExprNode<T, U64, true>;
/// IntExprNode for singed 128-bit integer.
pub type I128ExprNode<T> = IntExprNode<T, U128, true>;

/// Returns result of the If-Then-Else (ITE) - integer version.
pub fn int_ite<C, T, E>(
    c: C,
    t: T,
    e: E,
) -> <<T as BitAnd>::Output as BitOr<<E as BitAnd>::Output>>::Output
where
    C: Not + Clone,
    T: BitAnd + BitMask<C>,
    E: BitAnd + BitMask<<C as Not>::Output>,
    <T as BitAnd<T>>::Output: BitOr<<E as BitAnd<E>>::Output>,
{
    (<T as BitMask<C>>::bitmask(c.clone()) & t)
        | (<E as BitMask<<C as Not>::Output>>::bitmask(!c) & e)
}

/// Returns result of the If-Then-Else (ITE) - integer version - optimized version.
pub fn int_opt_ite<T, N, const SIGN: bool>(
    c: BoolExprNode<T>,
    t: IntExprNode<T, N, SIGN>,
    e: IntExprNode<T, N, SIGN>,
) -> IntExprNode<T, N, SIGN>
where
    N: ArrayLength<usize>,
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
{
    IntExprNode::from_boolexprs(
        t.iter()
            .zip(e.iter())
            .map(|(tb, eb)| bool_opt_ite(c.clone(), tb, eb)),
    )
    .unwrap()
}

/// Returns minimal value from two.
pub fn int_min<T, E>(t: T, e: E) -> <<T as BitAnd>::Output as BitOr<<E as BitAnd>::Output>>::Output
where
    <T as traits::IntOrd<E>>::Output: Clone + Not,
    T: Clone + BitAnd + BitMask<<T as IntOrd<E>>::Output> + IntOrd<E>,
    E: Clone + BitAnd + BitMask<<<T as IntOrd<E>>::Output as Not>::Output>,
    <T as BitAnd<T>>::Output: BitOr<<E as BitAnd<E>>::Output>,
{
    int_ite(t.clone().less_than(e.clone()), t, e)
}

/// Returns maximal value from two.
pub fn int_max<T, E>(t: T, e: E) -> <<T as BitAnd>::Output as BitOr<<E as BitAnd>::Output>>::Output
where
    <T as traits::IntOrd<E>>::Output: Clone + Not,
    T: Clone + BitAnd + BitMask<<T as IntOrd<E>>::Output> + IntOrd<E>,
    E: Clone + BitAnd + BitMask<<<T as IntOrd<E>>::Output as Not>::Output>,
    <T as BitAnd<T>>::Output: BitOr<<E as BitAnd<E>>::Output>,
{
    int_ite(t.clone().greater_than(e.clone()), t, e)
}

/// Returns result of indexing of table with values.
///
/// It performs operation: `table[index]`, where table given as object convertible to
/// iterator of expressions. Length of table must be at least `1 << K` - where K is number of
/// bits of index.
pub fn int_table<T, N, K, I, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    table_iter: I,
) -> IntExprNode<T, N, SIGN>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    N: ArrayLength<usize>,
    K: ArrayLength<usize>,
    I: IntoIterator<Item = IntExprNode<T, N, SIGN>>,
{
    let mut ites = vec![];
    let mut iter = table_iter.into_iter();
    while let Some(v) = iter.next() {
        if let Some(v2) = iter.next() {
            ites.push(int_ite(index.bit(0), v2, v));
        } else {
            panic!("Odd number of elements");
        }
    }

    for step in 1..K::USIZE {
        if (ites.len() & 1) != 0 {
            panic!("Odd number of elements");
        }
        for i in 0..(ites.len() >> 1) {
            ites[i] = int_ite(
                index.bit(step),
                ites[(i << 1) + 1].clone(),
                ites[i << 1].clone(),
            );
        }
        ites.resize(
            ites.len() >> 1,
            IntExprNode::filled(index.creator.clone(), false),
        );
    }

    ites.pop().unwrap()
}

/// Returns result of indexing of table with values.
///
/// It performs operation: `table[index]`, where table given as object convertible to
/// iterator of expressions. Length of table must be at least `1 << K` - where K is number of
/// bits of index.
pub fn int_booltable<T, K, I, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    table_iter: I,
) -> BoolExprNode<T>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    K: ArrayLength<usize>,
    I: IntoIterator<Item = BoolExprNode<T>>,
{
    let mut ites = vec![];
    let mut iter = table_iter.into_iter();
    while let Some(v) = iter.next() {
        if let Some(v2) = iter.next() {
            ites.push(bool_ite(index.bit(0), v2, v));
        } else {
            panic!("Odd number of elements");
        }
    }

    for step in 1..K::USIZE {
        if (ites.len() & 1) != 0 {
            panic!("Odd number of elements");
        }
        for i in 0..(ites.len() >> 1) {
            ites[i] = bool_ite(
                index.bit(step),
                ites[(i << 1) + 1].clone(),
                ites[i << 1].clone(),
            );
        }
        ites.resize(
            ites.len() >> 1,
            BoolExprNode::single_value(index.creator.clone(), false),
        );
    }

    ites.pop().unwrap()
}

/// Returns result of indexing of table with values. Optimized version.
///
/// It perform operation: `table[index]`, where table given as object convertible to
/// iterator of expressions. Length of table must be at least `1 << K` - where K is number of
/// bits of index. This optimized version reduces duplicates and negations.
pub fn int_opt_table<T, N, K, I, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    table_iter: I,
) -> IntExprNode<T, N, SIGN>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    N: ArrayLength<usize>,
    K: ArrayLength<usize>,
    I: IntoIterator<Item = IntExprNode<T, N, SIGN>>,
{
    let tbl = Vec::from_iter(table_iter);
    IntExprNode::from_boolexprs(
        (0..N::USIZE).map(|bit| int_opt_booltable(index.clone(), tbl.iter().map(|t| t.bit(bit)))),
    )
    .unwrap()
}

/// Returns result of indexing of table with values. Optimized version.
///
/// It performs operation: `table[index]`, where table given as object convertible to
/// iterator of expressions. Length of table must be at least `1 << K` - where K is number of
/// bits of index. This optimized version reduces duplicates and negations.
pub fn int_opt_booltable<T, K, I, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    table_iter: I,
) -> BoolExprNode<T>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    K: ArrayLength<usize>,
    I: IntoIterator<Item = BoolExprNode<T>>,
{
    use crate::boolexpr::{boolexpr_are_negated, boolexpr_are_same};
    let mut ites: Vec<BoolExprNode<T>> = vec![];
    let tbl = Vec::from_iter(table_iter);
    // detect any repetitions in any step before generation
    let mut iter = tbl.iter();
    while let Some(v) = iter.next() {
        if let Some(v2) = iter.next() {
            let count = ites.len() << 1;
            let mut already_added = false;
            for k in 1..K::USIZE {
                let kbit = 1 << k;
                // if odd in some bit level
                if (count & kbit) != 0 {
                    // check two pairs
                    if boolexpr_are_same(&tbl[count], &tbl[count - kbit])
                        && boolexpr_are_same(&tbl[count + 1], &tbl[count + 1 - kbit])
                    {
                        // if are same
                        ites.push(ites[(count - kbit) >> 1].clone());
                        already_added = true;
                        break;
                    } else if boolexpr_are_negated(&tbl[count], &tbl[count - kbit])
                        && boolexpr_are_negated(&tbl[count + 1], &tbl[count + 1 - kbit])
                    {
                        // if negated
                        ites.push(!ites[(count - kbit) >> 1].clone());
                        already_added = true;
                        break;
                    }
                }
            }
            if !already_added {
                ites.push(bool_opt_ite(index.bit(0), v2.clone(), v.clone()));
            }
        } else {
            panic!("Odd number of elements");
        }
    }

    for step in 1..K::USIZE {
        if (ites.len() & 1) != 0 {
            panic!("Odd number of elements");
        }
        for i in 0..(ites.len() >> 1) {
            let count = i << (step + 1);
            let mut already_added = false;
            for k in step + 1..K::USIZE {
                let kbit = 1 << k;
                // if odd in some bit level
                if (count & kbit) != 0 {
                    // check two pairs
                    if (0..(1 << (step + 1)))
                        .all(|x| boolexpr_are_same(&tbl[count + x], &tbl[count + x - kbit]))
                    {
                        // if are same
                        ites[i] = ites[(count - kbit) >> (step + 1)].clone();
                        already_added = true;
                        break;
                    } else if (0..(1 << (step + 1)))
                        .all(|x| boolexpr_are_negated(&tbl[count + x], &tbl[count + x - kbit]))
                    {
                        // if negated
                        ites[i] = !ites[(count - kbit) >> (step + 1)].clone();
                        already_added = true;
                        break;
                    }
                }
            }
            if !already_added {
                ites[i] = bool_opt_ite(
                    index.bit(step),
                    ites[(i << 1) + 1].clone(),
                    ites[i << 1].clone(),
                );
            }
        }
        ites.resize(
            ites.len() >> 1,
            BoolExprNode::single_value(index.creator.clone(), false),
        );
    }

    ites.pop().unwrap()
}

/// Demultiplexer - returns list of outputs of demultiplexer.
///
/// It performs operation: `[i==0 & v, i==1 & v, i==2 & v,....]`.
pub fn int_demux<T, N, K, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    value: IntExprNode<T, N, SIGN>,
) -> Vec<IntExprNode<T, N, SIGN>>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    N: ArrayLength<usize>,
    K: ArrayLength<usize>,
{
    assert_ne!(K::USIZE, 0);
    let mut chooser_table = vec![];
    chooser_table.push(!index.bit(K::USIZE - 1));
    chooser_table.push(index.bit(K::USIZE - 1));
    for l in 1..K::USIZE {
        let mut new_chooser_table = Vec::with_capacity(1 << l);
        for i in 0..1 << l {
            new_chooser_table.push(chooser_table[i].clone() & !index.bit(K::USIZE - l - 1));
            new_chooser_table.push(chooser_table[i].clone() & index.bit(K::USIZE - l - 1));
        }
        chooser_table = new_chooser_table;
    }
    (0..1 << K::USIZE)
        .map(|i| value.clone() & BitMask::bitmask(chooser_table[i].clone()))
        .collect::<Vec<_>>()
}

/// Demultiplexer - returns list of outputs of demultiplexer.
///
/// It performs operation: `[i==0 & v, i==1 & v, i==2 & v,....]`.
pub fn int_booldemux<T, K, const SIGN: bool>(
    index: IntExprNode<T, K, SIGN>,
    value: BoolExprNode<T>,
) -> Vec<BoolExprNode<T>>
where
    T: VarLit + Neg<Output = T> + Debug,
    isize: TryFrom<T>,
    <T as TryInto<usize>>::Error: Debug,
    <T as TryFrom<usize>>::Error: Debug,
    <isize as TryFrom<T>>::Error: Debug,
    K: ArrayLength<usize>,
{
    assert_ne!(K::USIZE, 0);
    let mut chooser_table = vec![];
    chooser_table.push(!index.bit(K::USIZE - 1));
    chooser_table.push(index.bit(K::USIZE - 1));
    for l in 1..K::USIZE {
        let mut new_chooser_table = Vec::with_capacity(1 << l);
        for i in 0..1 << l {
            new_chooser_table.push(chooser_table[i].clone() & !index.bit(K::USIZE - l - 1));
            new_chooser_table.push(chooser_table[i].clone() & index.bit(K::USIZE - l - 1));
        }
        chooser_table = new_chooser_table;
    }
    (0..1 << K::USIZE)
        .map(|i| value.clone() & chooser_table[i].clone())
        .collect::<Vec<_>>()
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::boolexpr::BoolExprNode;

    #[test]
    fn test_expr_node() {
        let ec = ExprCreator::new();
        let x1 = IntExprNode::<isize, U8, false>::variable(ec.clone());
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 9], *x1.indexes);
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 9], *(x1.clone().as_signed()).indexes);
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 9], *(x1.as_unsigned()).indexes);
        let x2 = IntExprNode::<isize, U8, true>::variable(ec.clone());
        assert_eq!([10, 11, 12, 13, 14, 15, 16, 17], *x2.indexes);
        assert_eq!(
            [10, 11, 12, 13, 14, 15, 16, 17],
            *(x2.clone().as_unsigned()).indexes
        );
        assert_eq!([10, 11, 12, 13, 14, 15, 16, 17], *(x2.as_signed()).indexes);

        let b1 = BoolExprNode::variable(ec.clone());
        let x3 = IntExprNode::<isize, U4, false>::filled(ec.clone(), b1.varlit().unwrap());
        assert_eq!([18, 18, 18, 18], *x3.indexes);
        let b1 = BoolExprNode::variable(ec.clone());
        let b2 = BoolExprNode::variable(ec.clone());
        let bxp = b1.clone() ^ b2.clone();
        let x4 = IntExprNode::<isize, U4, false>::filled_expr(bxp.clone());
        assert_eq!(
            iter::repeat(bxp.index)
                .take(4)
                .collect::<Vec<_>>()
                .as_slice(),
            x4.indexes.as_slice()
        );

        //
        let b3 = BoolExprNode::variable(ec.clone());
        let b4 = BoolExprNode::variable(ec.clone());
        let bxps = [
            b1.clone() & b2.clone(),
            b1.clone() | b2.clone(),
            b1.clone() ^ b2.clone(),
            b1 | b2.clone() | b3.clone(),
            b3.clone() & b4.clone(),
            b3.clone() | b4.clone(),
            b3.clone() ^ b4.clone(),
            b2 | b3 | b4,
        ];

        let x5 = IntExprNode::<isize, U8, false>::from_boolexprs(bxps.clone()).unwrap();
        assert_eq!(
            bxps.iter().map(|x| x.index).collect::<Vec<_>>().as_slice(),
            x5.indexes.as_slice()
        );
    }

    #[test]
    fn test_expr_node_manip() {
        let ec = ExprCreator::new();
        let x1 = IntExprNode::<isize, U16, false>::variable(ec.clone());
        let x2 = x1.subvalue::<U6>(7);
        assert_eq!([9, 10, 11, 12, 13, 14], *x2.indexes);
        let x3 = x1
            .select_bits::<U9, _>([3, 8, 9, 0, 3, 4, 12, 14, 15])
            .unwrap();
        assert_eq!([5, 10, 11, 2, 5, 6, 14, 16, 17], *x3.indexes);
        assert_eq!(None, x1.select_bits::<U9, _>([3, 8, 9, 0, 3, 4, 12, 14]));
        assert_eq!(
            None,
            x1.select_bits::<U9, _>([3, 8, 9, 0, 3, 4, 12, 14, 15, 0])
        );

        let y1 = IntExprNode::<isize, U8, false>::variable(ec.clone());
        let z1 = x1.clone().concat(y1.clone());
        assert_eq!(
            (2..(2 + 24)).into_iter().collect::<Vec<usize>>().as_slice(),
            z1.indexes.as_slice()
        );
        let z1 = y1.concat(x1);
        assert_eq!(
            ((2 + 16)..(2 + 24))
                .into_iter()
                .chain((2..18).into_iter())
                .collect::<Vec<usize>>()
                .as_slice(),
            z1.indexes.as_slice()
        );
        let (xt1, xt2) = z1.split::<U5>();
        assert_eq!([18, 19, 20, 21, 22], *xt1.indexes);
        assert_eq!(
            ((2 + 16 + 5)..(2 + 24))
                .into_iter()
                .chain((2..18).into_iter())
                .collect::<Vec<usize>>()
                .as_slice(),
            xt2.indexes.as_slice()
        );
    }

    #[test]
    fn test_expr_node_from() {
        let ec = ExprCreator::new();
        // Unsigned N -> Unsigned N+X
        let x1 = IntExprNode::<isize, U8, false>::variable(ec.clone());
        let x2 = IntExprNode::<isize, U14, false>::from(x1.clone());
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0], *x2.indexes);
        // Unsigned N -> Signed N+X
        let ix2 = IntExprNode::<isize, U14, true>::from(x1.clone());
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0], *ix2.indexes);
        let ix1 = IntExprNode::<isize, U8, true>::variable(ec.clone());
        // Signed N, where SIGN=var -> Signed N+X
        let ix2 = IntExprNode::<isize, U12, true>::from(ix1.clone());
        assert_eq!(
            [10, 11, 12, 13, 14, 15, 16, 17, 17, 17, 17, 17],
            *ix2.indexes
        );
    }

    #[test]
    fn test_expr_node_try_from_dynint_expr_node() {
        use crate::dynintexpr::DynIntExprNode;
        let ec = ExprCreator::new();
        let dix1 = DynIntExprNode::<isize, false>::variable(ec.clone(), 10);
        let ix1 = IntExprNode::<isize, U10, false>::try_from(dix1.clone()).unwrap();
        assert_eq!(ix1.indexes.as_slice(), dix1.indexes.as_slice());
    }

    #[test]
    fn test_expr_node_try_from() {
        let ec = ExprCreator::new();
        let ix1 = IntExprNode::<isize, U8, true>::from(IntExprNode::<isize, U7, false>::variable(
            ec.clone(),
        ));
        // Signed N, SIGN=0 -> Unsigned N
        let x1 = IntExprNode::<isize, U8, false>::try_from(ix1.clone()).unwrap();
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 0], *x1.indexes);
        // Signed N, SIGN=0 -> Unsigned N+X
        let x2 = IntExprNode::<isize, U9, false>::try_from(ix1.clone()).unwrap();
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 0, 0], *x2.indexes);
        let x2 = IntExprNode::<isize, U10, false>::try_from(ix1).unwrap();
        assert_eq!([2, 3, 4, 5, 6, 7, 8, 0, 0, 0], *x2.indexes);

        let ix1 = IntExprNode::<isize, U8, true>::from(IntExprNode::<isize, U7, true>::variable(
            ec.clone(),
        ));
        // Signed N, SIGN=var -> Unsigned N
        assert_eq!(
            Err("Value can be negative".to_string()),
            IntExprNode::<isize, U8, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        // Signed N, SIGN=var -> Unsigned N+X
        assert_eq!(
            Err("Value can be negative".to_string()),
            IntExprNode::<isize, U9, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Value can be negative".to_string()),
            IntExprNode::<isize, U10, false>::try_from(ix1).map_err(|x| x.to_string())
        );

        let x1 = IntExprNode::<isize, U8, false>::from(IntExprNode::<isize, U7, false>::variable(
            ec.clone(),
        ));
        // Unsigned N, LAST=0 -> Signed N
        let ix2 = IntExprNode::<isize, U8, true>::try_from(x1.clone()).unwrap();
        assert_eq!([16, 17, 18, 19, 20, 21, 22, 0], *ix2.indexes);
        // Unsigned N, LAST=0 -> Signed N+X
        let ix2 = IntExprNode::<isize, U9, true>::try_from(x1.clone()).unwrap();
        assert_eq!([16, 17, 18, 19, 20, 21, 22, 0, 0], *ix2.indexes);

        let x1 = IntExprNode::<isize, U8, false>::variable(ec.clone());
        // Unsinged N, LAST=var -> Signed N+X
        let ix2 = IntExprNode::<isize, U9, true>::try_from(x1.clone()).unwrap();
        assert_eq!([23, 24, 25, 26, 27, 28, 29, 30, 0], *ix2.indexes);
        // Unsinged N, LAST=var -> Signed N
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U8, true>::try_from(x1.clone()).map_err(|x| x.to_string())
        );

        //
        // V[N-X..] = 0, LASTS = 0
        let ux1 = IntExprNode::<isize, U8, false>::from(IntExprNode::<isize, U6, false>::variable(
            ec.clone(),
        ));
        // Unsigned N, LASTS=0 -> Unsigned N-X
        let x2 = IntExprNode::<isize, U6, false>::try_from(ux1.clone()).unwrap();
        assert_eq!([31, 32, 33, 34, 35, 36], *x2.indexes);
        // Unsigned N, LASTS=0, V[N-X-1]=var -> Unsigned N-X
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, false>::try_from(ux1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U4, false>::try_from(ux1.clone()).map_err(|x| x.to_string())
        );
        let ix2 = IntExprNode::<isize, U7, true>::try_from(ux1.clone()).unwrap();
        // Unsigned N, LASTS=0 -> Signed N-X+1
        assert_eq!([31, 32, 33, 34, 35, 36, 0], *ix2.indexes);
        // Unsigned N, LASTS=0 -> Signed N-X
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U6, true>::try_from(ux1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, true>::try_from(ux1.clone()).map_err(|x| x.to_string())
        );

        let ix1 = IntExprNode::<isize, U8, true>::from(IntExprNode::<isize, U6, false>::variable(
            ec.clone(),
        ));
        // Signed N, LASTS=0 -> Unsigned N-X
        let x2 = IntExprNode::<isize, U6, false>::try_from(ix1.clone()).unwrap();
        assert_eq!([37, 38, 39, 40, 41, 42], *x2.indexes);
        // Signed N, LASTS=0 -> Unsigned N-X-1
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        // Signed N, LASTS=0 -> Signed N-X+1
        let ix2 = IntExprNode::<isize, U7, true>::try_from(ix1.clone()).unwrap();
        assert_eq!([37, 38, 39, 40, 41, 42, 0], *ix2.indexes);
        // Signed N, LASTS=0 -> Signed N-X
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U6, true>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, true>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );

        // constvar - this same var for all LASTS bits
        let ix1 = IntExprNode::<isize, U8, true>::from(IntExprNode::<isize, U6, true>::variable(
            ec.clone(),
        ));
        // Signed N, LASTS=constvar -> Unsigned N-X
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U6, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        // Signed N, LASTS=constvar -> Unsigned N-X+1
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U7, false>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        let ix2 = IntExprNode::<isize, U6, true>::try_from(ix1.clone()).unwrap();
        // Signed N, LASTS=constvar -> Signed N-X
        assert_eq!([43, 44, 45, 46, 47, 48], *ix2.indexes);
        // Signed N, LASTS=constvar -> Signed N-X-1
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U5, true>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
        assert_eq!(
            Err("Bit overflow".to_string()),
            IntExprNode::<isize, U4, true>::try_from(ix1.clone()).map_err(|x| x.to_string())
        );
    }

    #[test]
    fn test_int_ite() {
        let ec = ExprCreator::new();
        let c1 = BoolExprNode::<isize>::variable(ec.clone());
        let x1 = IntExprNode::<isize, U7, false>::variable(ec.clone());
        let x2 = IntExprNode::<isize, U7, false>::variable(ec.clone());
        let res = int_ite(c1, x1, x2);

        let exp_ec = ExprCreator::new();
        let c1 = BoolExprNode::<isize>::variable(exp_ec.clone());
        let x1 = IntExprNode::<isize, U7, false>::variable(exp_ec.clone());
        let x2 = IntExprNode::<isize, U7, false>::variable(exp_ec.clone());
        let exp =
            (IntExprNode::filled_expr(c1.clone()) & x1) | (IntExprNode::filled_expr(!c1) & x2);

        assert_eq!(exp.indexes.as_slice(), res.indexes.as_slice());
        assert_eq!(*exp_ec.borrow(), *ec.borrow());
    }

    #[test]
    fn test_int_table() {
        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U5, false>::variable(ec.clone());
        let values = (0..(1 << 5))
            .into_iter()
            .map(|_| IntExprNode::<isize, U10, false>::variable(ec.clone()))
            .collect::<Vec<_>>();
        let res = int_table(idx, values);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U5, false>::variable(exp_ec.clone());
        let values = (0..(1 << 5))
            .into_iter()
            .map(|_| IntExprNode::<isize, U10, false>::variable(exp_ec.clone()))
            .collect::<Vec<_>>();

        let mut selects0 = vec![];
        for i in 0..16 {
            selects0.push(int_ite(
                idx.bit(0),
                values[(i << 1) + 1].clone(),
                values[i << 1].clone(),
            ));
        }
        let mut selects1 = vec![];
        for i in 0..8 {
            selects1.push(int_ite(
                idx.bit(1),
                selects0[(i << 1) + 1].clone(),
                selects0[i << 1].clone(),
            ));
        }
        let mut selects2 = vec![];
        for i in 0..4 {
            selects2.push(int_ite(
                idx.bit(2),
                selects1[(i << 1) + 1].clone(),
                selects1[i << 1].clone(),
            ));
        }
        let mut selects3 = vec![];
        for i in 0..2 {
            selects3.push(int_ite(
                idx.bit(3),
                selects2[(i << 1) + 1].clone(),
                selects2[i << 1].clone(),
            ));
        }
        let exp = int_ite(idx.bit(4), selects3[1].clone(), selects3[0].clone());

        assert_eq!(exp.indexes.as_slice(), res.indexes.as_slice());
        assert_eq!(*exp_ec.borrow(), *ec.borrow());
    }

    #[test]
    fn test_int_booltable() {
        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U5, false>::variable(ec.clone());
        let values = (0..(1 << 5))
            .into_iter()
            .map(|_| BoolExprNode::<isize>::variable(ec.clone()))
            .collect::<Vec<_>>();
        let res = int_booltable(idx, values);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U5, false>::variable(exp_ec.clone());
        let values = (0..(1 << 5))
            .into_iter()
            .map(|_| BoolExprNode::<isize>::variable(exp_ec.clone()))
            .collect::<Vec<_>>();

        let mut selects0 = vec![];
        for i in 0..16 {
            selects0.push(bool_ite(
                idx.bit(0),
                values[(i << 1) + 1].clone(),
                values[i << 1].clone(),
            ));
        }
        let mut selects1 = vec![];
        for i in 0..8 {
            selects1.push(bool_ite(
                idx.bit(1),
                selects0[(i << 1) + 1].clone(),
                selects0[i << 1].clone(),
            ));
        }
        let mut selects2 = vec![];
        for i in 0..4 {
            selects2.push(bool_ite(
                idx.bit(2),
                selects1[(i << 1) + 1].clone(),
                selects1[i << 1].clone(),
            ));
        }
        let mut selects3 = vec![];
        for i in 0..2 {
            selects3.push(bool_ite(
                idx.bit(3),
                selects2[(i << 1) + 1].clone(),
                selects2[i << 1].clone(),
            ));
        }
        let exp = bool_ite(idx.bit(4), selects3[1].clone(), selects3[0].clone());

        assert_eq!(exp.index, res.index);
        assert_eq!(*exp_ec.borrow(), *ec.borrow());
    }

    #[test]
    fn test_int_demux() {
        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U1, false>::variable(ec.clone());
        let value = IntExprNode::<isize, U10, false>::variable(ec.clone());
        let res = int_demux(idx, value);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U1, false>::variable(exp_ec.clone());
        let value = IntExprNode::<isize, U10, false>::variable(exp_ec.clone());
        let exp = vec![
            value.clone() & IntExprNode::filled_expr(!idx.bit(0)),
            value.clone() & IntExprNode::filled_expr(idx.bit(0)),
        ];

        assert_eq!(
            exp.into_iter().map(|x| x.indexes).collect::<Vec<_>>(),
            res.into_iter().map(|x| x.indexes).collect::<Vec<_>>()
        );
        assert_eq!(*exp_ec.borrow(), *ec.borrow());

        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U4, false>::variable(ec.clone());
        let value = IntExprNode::<isize, U10, false>::variable(ec.clone());
        let res = int_demux(idx, value);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U4, false>::variable(exp_ec.clone());
        let value = IntExprNode::<isize, U10, false>::variable(exp_ec.clone());
        let stage0 = vec![!idx.bit(3), idx.bit(3)];
        let stage1 = stage0
            .iter()
            .map(|x| [x.clone() & !idx.bit(2), x.clone() & idx.bit(2)])
            .flatten()
            .collect::<Vec<_>>();
        let stage2 = stage1
            .iter()
            .map(|x| [x.clone() & !idx.bit(1), x.clone() & idx.bit(1)])
            .flatten()
            .collect::<Vec<_>>();
        let stage3 = stage2
            .iter()
            .map(|x| [x.clone() & !idx.bit(0), x.clone() & idx.bit(0)])
            .flatten()
            .collect::<Vec<_>>();
        let exp = stage3
            .into_iter()
            .map(|x| value.clone() & IntExprNode::filled_expr(x.clone()))
            .collect::<Vec<_>>();

        assert_eq!(
            exp.into_iter().map(|x| x.indexes).collect::<Vec<_>>(),
            res.into_iter().map(|x| x.indexes).collect::<Vec<_>>()
        );
        assert_eq!(*exp_ec.borrow(), *ec.borrow());
    }

    #[test]
    fn test_int_booldemux() {
        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U1, false>::variable(ec.clone());
        let value = BoolExprNode::<isize>::variable(ec.clone());
        let res = int_booldemux(idx, value);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U1, false>::variable(exp_ec.clone());
        let value = BoolExprNode::<isize>::variable(exp_ec.clone());
        let exp = vec![value.clone() & !idx.bit(0), value.clone() & idx.bit(0)];

        assert_eq!(
            exp.into_iter().map(|x| x.index).collect::<Vec<_>>(),
            res.into_iter().map(|x| x.index).collect::<Vec<_>>()
        );
        assert_eq!(*exp_ec.borrow(), *ec.borrow());

        let ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U4, false>::variable(ec.clone());
        let value = BoolExprNode::<isize>::variable(ec.clone());
        let res = int_booldemux(idx, value);

        let exp_ec = ExprCreator::new();
        let idx = IntExprNode::<isize, U4, false>::variable(exp_ec.clone());
        let value = BoolExprNode::<isize>::variable(exp_ec.clone());
        let stage0 = vec![!idx.bit(3), idx.bit(3)];
        let stage1 = stage0
            .iter()
            .map(|x| [x.clone() & !idx.bit(2), x.clone() & idx.bit(2)])
            .flatten()
            .collect::<Vec<_>>();
        let stage2 = stage1
            .iter()
            .map(|x| [x.clone() & !idx.bit(1), x.clone() & idx.bit(1)])
            .flatten()
            .collect::<Vec<_>>();
        let stage3 = stage2
            .iter()
            .map(|x| [x.clone() & !idx.bit(0), x.clone() & idx.bit(0)])
            .flatten()
            .collect::<Vec<_>>();
        let exp = stage3
            .into_iter()
            .map(|x| value.clone() & x.clone())
            .collect::<Vec<_>>();

        assert_eq!(
            exp.into_iter().map(|x| x.index).collect::<Vec<_>>(),
            res.into_iter().map(|x| x.index).collect::<Vec<_>>()
        );
        assert_eq!(*exp_ec.borrow(), *ec.borrow());
    }
}