cloudllm 0.6.3

A batteries-included Rust toolkit for building intelligent agents with LLM integration, multi-protocol tool support, and multi-agent orchestration.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
# CloudLLM

<p align="center">
  <img src="https://github.com/CloudLLM-ai/cloudllm/blob/master/logo.png?raw=true" width="220" alt="CloudLLM logo" />
</p>

CloudLLM is a batteries-included Rust toolkit for building intelligent agents with LLM integration,
multi-protocol tool support, and multi-agent orchestration. It provides:

* **Agents with Tools**: Create agents that connect to LLMs and execute actions through a flexible,
  multi-protocol tool system (local, remote MCP, Memory, custom protocols),
* **Server Deployment**: Easy standalone MCP server creation via [`MCPServerBuilder`]https://docs.rs/cloudllm/latest/cloudllm/mcp_server/struct.MCPServerBuilder.html
  with HTTP, authentication, and IP filtering,
* **Flexible Tool Creation**: From simple Rust closures to advanced custom protocol implementations,
* **Stateful Sessions**: A [`LLMSession`]https://docs.rs/cloudllm/latest/cloudllm/struct.LLMSession.html for
  managing conversation history with context trimming and token accounting,
* **Multi-Agent Orchestration**: A [`council`]https://docs.rs/cloudllm/latest/cloudllm/council/index.html engine
  supporting Parallel, RoundRobin, Moderated, Hierarchical, and Debate collaboration patterns,
* **Provider Flexibility**: Unified [`ClientWrapper`]https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/index.html
  trait for OpenAI, Claude, Gemini, Grok, and custom OpenAI-compatible endpoints.

The entire public API is documented with _compilable_ examples—run `cargo doc --open` to browse the
crate-level manual.

---

## Installation

Add CloudLLM to your project:

```toml
[dependencies]
cloudllm = "0.6.0"
```

The crate targets `tokio` 1.x and Rust 1.70+.

---

## Quick start

### 1. Initialising a session

```rust,no_run
use std::sync::Arc;

use cloudllm::{init_logger, LLMSession, Role};
use cloudllm::clients::openai::{Model, OpenAIClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    init_logger();

    let api_key = std::env::var("OPEN_AI_SECRET")?;
    let client = OpenAIClient::new_with_model_enum(&api_key, Model::GPT41Nano);

    let mut session = LLMSession::new(
        Arc::new(client),
        "You write product update haikus.".to_owned(),
        8_192,
    );

    let reply = session
        .send_message(Role::User, "Announce the logging feature.".to_owned(), None)
        .await?;

    println!("Assistant: {}", reply.content);
    println!("Usage (tokens): {:?}", session.token_usage());
    Ok(())
}
```

### 2. Streaming tokens in real time

```rust,no_run
use cloudllm::{LLMSession, Role};
use cloudllm::clients::openai::{Model, OpenAIClient};
use futures_util::StreamExt;
use std::sync::Arc;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let api_key = std::env::var("OPEN_AI_SECRET")?;
    let client = Arc::new(OpenAIClient::new_with_model_enum(&api_key, Model::GPT41Mini));
    let mut session = LLMSession::new(client, "You think out loud.".into(), 16_000);

    if let Some(mut stream) = session
        .send_message_stream(Role::User, "Explain type erasure.".into(), None)
        .await? {
        while let Some(chunk) = stream.next().await {
            let chunk = chunk?;
            print!("{}", chunk.content);
            if let Some(reason) = chunk.finish_reason {
                println!("\n<terminated: {reason}>");
            }
        }
    }

    Ok(())
}
```

---

## Provider wrappers

CloudLLM ships wrappers for popular OpenAI-compatible services:

| Provider | Module | Notable constructors |
|----------|--------|----------------------|
| OpenAI   | `cloudllm::clients::openai`  | `OpenAIClient::new_with_model_enum`, `OpenAIClient::new_with_base_url` |
| Anthropic Claude | `cloudllm::clients::claude` | `ClaudeClient::new_with_model_enum` |
| Google Gemini | `cloudllm::clients::gemini` | `GeminiClient::new_with_model_enum` |
| xAI Grok | `cloudllm::clients::grok` | `GrokClient::new_with_model_enum` |

Providers share the [`ClientWrapper`](https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/trait.ClientWrapper.html)
contract, so you can swap them without changing downstream code.

```rust,no_run
use cloudllm::ClientWrapper;
use cloudllm::clients::claude::{ClaudeClient, Model};
use cloudllm::client_wrapper::{Message, Role};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let key = std::env::var("ANTHROPIC_KEY")?;
    let claude = ClaudeClient::new_with_model_enum(&key, Model::ClaudeSonnet4);

    let response = claude
        .send_message(
            &[Message { role: Role::User, content: "Summarise rice fermentation.".into() }],
            None,
        )
        .await?;

    println!("{}", response.content);
    Ok(())
}
```

Every wrapper exposes token accounting via [`ClientWrapper::get_last_usage`](https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/trait.ClientWrapper.html#method.get_last_usage).

---

## LLMSession: Stateful Conversations (The Foundation)

LLMSession is the core building block—it maintains conversation history with automatic context trimming
and token accounting. Use it for simple stateful conversations with any LLM provider:

```rust,no_run
use std::sync::Arc;
use cloudllm::{LLMSession, Role};
use cloudllm::clients::openai::{OpenAIClient, Model};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Arc::new(OpenAIClient::new_with_model_enum(
        &std::env::var("OPEN_AI_SECRET")?,
        Model::GPT41Mini
    ));

    let mut session = LLMSession::new(client, "You are helpful.".into(), 8_192);

    let reply = session
        .send_message(Role::User, "Tell me about Rust.".into(), None)
        .await?;

    println!("Assistant: {}", reply.content);
    println!("Tokens used: {:?}", session.token_usage());
    Ok(())
}
```

---

## Agents: Building Intelligent Workers with Tools

Agents extend LLMSession by adding identity, expertise, and optional tools. They're the primary way to build
sophisticated LLM interactions where you need the agent to take actions beyond conversation:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocol::ToolRegistry;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Arc::new(OpenAIClient::new_with_model_enum(
        &std::env::var("OPEN_AI_SECRET")?,
        Model::GPT41Mini
    ));

    // Create agent with custom identity and expertise
    let agent = Agent::new("researcher", "Research Assistant", client)
        .with_expertise("Literature search and analysis")
        .with_personality("Thorough and methodical");

    // Agent is ready to execute actions!
    println!("Agent ready: {}", agent.name);
    Ok(())
}
```

---

## Tool Registry: Multi-Protocol Tool Access

Agents access tools through the `ToolRegistry`, which supports **multiple simultaneous protocols**. Use local tools, remote MCP servers, persistent Memory, or custom implementations—all transparently:

### Adding Tools to a Registry

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::tool_protocols::{CustomToolProtocol, McpClientProtocol};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create empty registry for multiple protocols
    let mut registry = ToolRegistry::empty();

    // Add local tools (Rust closures)
    let local = Arc::new(CustomToolProtocol::new());
    registry.add_protocol("local", local).await?;

    // Add remote MCP servers
    let github = Arc::new(McpClientProtocol::new("http://localhost:8081".to_string()));
    registry.add_protocol("github", github).await?;

    let calculator = Arc::new(McpClientProtocol::new("http://localhost:8082".to_string()));
    registry.add_protocol("calculator", calculator).await?;

    // Agent using this registry accesses all tools transparently!
    Ok(())
}
```

**Key Benefits:**
- **Local + Remote**: Mix tools from different sources in a single agent
- **Transparent Routing**: Registry automatically routes calls to the correct protocol
- **Dynamic Management**: Add/remove protocols at runtime
- **Backward Compatible**: Existing single-protocol code still works

### Registry Modes

**Multi-Protocol (New agents):**
```rust
let mut registry = ToolRegistry::empty();
registry.add_protocol("name", protocol).await?;
```

**Single-Protocol (Existing code):**
```rust
let protocol = Arc::new(CustomToolProtocol::new());
let registry = ToolRegistry::new(protocol);
```

---

## Deploying Tool Servers with MCPServerBuilder

Create standalone MCP servers exposing tools over HTTP. Perfect for microservices, integration testing, or sharing tools across your infrastructure:

```rust,no_run
use std::sync::Arc;
use cloudllm::mcp_server::MCPServerBuilder;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let protocol = Arc::new(CustomToolProtocol::new());

    // Register tools
    protocol.register_tool(
        ToolMetadata::new("calculator", "Evaluate math expressions"),
        Arc::new(|params| {
            let expr = params["expr"].as_str().unwrap_or("0");
            Ok(ToolResult::success(serde_json::json!({"result": 42.0})))
        }),
    ).await;

    // Deploy with security options
    MCPServerBuilder::new()
        .with_protocol("tools", protocol)
        .with_port(8080)
        .with_localhost_only()  // Only accept localhost
        .with_bearer_token("your-secret-token")  // Optional auth
        .build_and_serve()
        .await?;

    Ok(())
}
```

Available on the `mcp-server` feature. Other agents connect via `McpClientProtocol::new("http://localhost:8080")`.

---

## Creating Tools: Simple to Advanced

CloudLLM provides a powerful, protocol-agnostic tool system that works seamlessly with agents and councils.
Tools enable agents to take actions beyond conversation—calculate values, query databases, call APIs, or
maintain state across sessions.

### Simple Tool Creation: Rust Closures

Register Rust functions or closures as tools. Perfect for quick prototyping:

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let protocol = Arc::new(CustomToolProtocol::new());

    // Synchronous tool
    protocol.register_tool(
        ToolMetadata::new("add", "Add two numbers"),
        Arc::new(|params| {
            let a = params["a"].as_f64().unwrap_or(0.0);
            let b = params["b"].as_f64().unwrap_or(0.0);
            Ok(ToolResult::success(serde_json::json!({"result": a + b})))
        }),
    ).await;

    // Asynchronous tool
    protocol.register_async_tool(
        ToolMetadata::new("fetch_url", "Fetch data from a URL"),
        Arc::new(|params| {
            Box::pin(async {
                let url = params["url"].as_str().unwrap_or("");
                // Perform async operation
                Ok(ToolResult::success(serde_json::json!({"url": url, "status": "ok"})))
            })
        }),
    ).await;

    Ok(())
}
```

### Advanced Tool Creation: Custom Protocol Implementation

For complex tools or external system integration, implement the `ToolProtocol` trait:

```rust,no_run
use async_trait::async_trait;
use cloudllm::tool_protocol::{ToolMetadata, ToolProtocol, ToolResult};
use std::error::Error;

pub struct DatabaseAdapter;

#[async_trait]
impl ToolProtocol for DatabaseAdapter {
    async fn execute(
        &self,
        tool_name: &str,
        parameters: serde_json::Value,
    ) -> Result<ToolResult, Box<dyn Error + Send + Sync>> {
        match tool_name {
            "query" => {
                let sql = parameters["sql"].as_str().unwrap_or("");
                // Execute actual database query
                Ok(ToolResult::success(serde_json::json!({"result": "data"})))
            }
            _ => Ok(ToolResult::error("Unknown tool".into()))
        }
    }

    async fn list_tools(&self) -> Result<Vec<ToolMetadata>, Box<dyn Error + Send + Sync>> {
        Ok(vec![ToolMetadata::new("query", "Execute SQL query")])
    }

    async fn get_tool_metadata(
        &self,
        tool_name: &str,
    ) -> Result<ToolMetadata, Box<dyn Error + Send + Sync>> {
        Ok(ToolMetadata::new(tool_name, "Database query tool"))
    }

    fn protocol_name(&self) -> &str {
        "database"
    }
}
```

### Using Tools with Agents

Agents use tools through a registry. Connect any tool source to an agent:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolRegistry, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create tools
    let protocol = Arc::new(CustomToolProtocol::new());
    protocol.register_tool(
        ToolMetadata::new("add", "Add two numbers"),
        Arc::new(|params| {
            let a = params["a"].as_f64().unwrap_or(0.0);
            let b = params["b"].as_f64().unwrap_or(0.0);
            Ok(ToolResult::success(serde_json::json!({"result": a + b})))
        }),
    ).await;

    let registry = Arc::new(ToolRegistry::new(protocol));

    // Create agent with tool access
    let agent = Agent::new(
        "calculator",
        "Calculator Agent",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_expertise("Performs calculations")
    .with_tools(registry);

    println!("✓ Agent ready with tools");
    Ok(())
}
```

### Protocol Implementations

#### 1. CustomToolProtocol (Local Rust Functions)

Register local Rust closures or async functions as tools. Covered above under "Simple Tool Creation".

#### 2. McpClientProtocol (Remote MCP Servers)

Connect to remote MCP servers:

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocols::McpClientProtocol;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Connect to an MCP server
    let protocol = Arc::new(McpClientProtocol::new("http://localhost:8080".to_string()));

    // List available tools from the MCP server
    let tools = protocol.list_tools().await?;
    println!("Available tools: {}", tools.len());

    Ok(())
}
```

#### 3. MemoryProtocol (Persistent Agent State)

For maintaining state across sessions within a single process:

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory for persistence
    let memory = Arc::new(Memory::new());
    let protocol = Arc::new(MemoryProtocol::new(memory));
    let registry = Arc::new(ToolRegistry::new(protocol));

    // Execute memory operations
    let result = registry.execute_tool(
        "memory",
        serde_json::json!({"command": "P task_name ImportantTask 3600"}),
    ).await?;

    println!("Stored: {}", result.output);
    Ok(())
}
```


### Built-in Tools

CloudLLM includes several production-ready tools that agents can use directly:

#### Calculator Tool

A fast, reliable scientific calculator for mathematical operations and statistical analysis. Perfect for agents that need to perform computations.

**Features:**
- Comprehensive arithmetic operations (`+`, `-`, `*`, `/`, `^`, `%`)
- Trigonometric functions (sin, cos, tan, csc, sec, cot, asin, acos, atan)
- Hyperbolic functions (sinh, cosh, tanh, csch, sech, coth)
- Logarithmic and exponential functions (ln, log, log2, exp)
- Statistical operations (mean, median, mode, std, stdpop, var, varpop, sum, count, min, max)
- Mathematical constants (pi, e)

**Usage Example:**

```rust,no_run
use cloudllm::tools::Calculator;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let calc = Calculator::new();

    // Arithmetic
    println!("{}", calc.evaluate("2 + 2 * 3").await?);  // 8.0

    // Trigonometry (radians)
    println!("{}", calc.evaluate("sin(pi/2)").await?);  // 1.0

    // Statistical functions
    println!("{}", calc.evaluate("mean([1, 2, 3, 4, 5])").await?);  // 3.0

    Ok(())
}
```

**More Examples:**
- `sqrt(16)` → 4.0
- `log(100)` → 2.0 (base 10)
- `std([1, 2, 3, 4, 5])` → 1.581 (sample standard deviation)
- `floor(3.7)` → 3.0

For comprehensive documentation, see [`Calculator` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.Calculator.html).

#### Memory Tool

A persistent, TTL-aware key-value store for maintaining agent state across sessions. Perfect for single agents to track progress or multi-agent councils to coordinate decisions.

**Features:**
- Key-value storage with optional TTL (time-to-live) expiration
- Automatic background expiration of stale entries (1-second cleanup)
- Metadata tracking (creation timestamp, expiration time)
- Succinct protocol for LLM communication (token-efficient)
- Thread-safe shared access across agents
- Designed specifically for agent communication (not a general database)

**Basic Usage Example:**

```rust,no_run
use cloudllm::tools::Memory;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let memory = Memory::new();

    // Store data with 1-hour TTL
    memory.put("research_progress".to_string(), "Found 3 relevant papers".to_string(), Some(3600));

    // Retrieve data
    if let Some((value, metadata)) = memory.get("research_progress", true) {
        println!("Progress: {}", value);
        println!("Stored at: {:?}", metadata.unwrap().added_utc);
    }

    // List all stored keys
    let keys = memory.list_keys();
    println!("Active memories: {:?}", keys);

    // Store without expiration (permanent)
    memory.put("important_decision".to_string(), "Use approach A".to_string(), None);

    // Delete specific memory
    memory.delete("research_progress");

    // Clear all memories
    memory.clear();

    Ok(())
}
```

**Using with Agents via Tool Protocol:**

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::council::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory for agents
    let memory = Arc::new(Memory::new());

    // Wrap with protocol for agent usage
    let protocol = Arc::new(MemoryProtocol::new(memory.clone()));
    let registry = Arc::new(ToolRegistry::new(protocol));

    // Create agent with memory access
    let mut agent = Agent::new(
        "researcher",
        "Research Agent",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_tools(registry);

    // Agent can now use memory via commands like:
    // "P research_state Gathering data TTL:7200"
    // "G research_state META"
    // "L"

    Ok(())
}
```

**Memory Protocol Commands (for agents):**

The Memory tool uses a token-efficient protocol designed for LLM communication:

| Command | Syntax | Example | Use Case |
|---------|--------|---------|----------|
| **Put** | `P <key> <value> [TTL:<seconds>]` | `P task_status InProgress TTL:3600` | Store state with 1-hour expiration |
| **Get** | `G <key> [META]` | `G task_status META` | Retrieve value + metadata |
| **List** | `L [META]` | `L META` | List all keys with metadata |
| **Delete** | `D <key>` | `D task_status` | Remove specific memory |
| **Clear** | `C` | `C` | Wipe all memories |
| **Spec** | `SPEC` | `SPEC` | Get protocol specification |

**Use Case Examples:**

1. **Single-Agent Progress Tracking:**
   ```
   Agent stores: "P document_checkpoint Page 247 TTL:86400"
   Later: "G document_checkpoint" → retrieves current progress
   ```

2. **Multi-Agent Council Coordination:**
   ```
   Agent A stores: "P decision_consensus Approved TTL:3600"
   Agent B reads: "G decision_consensus"
   Agent C confirms: "L" → sees what's been decided
   ```

3. **Session Recovery:**
   ```
   Before shutdown: "P session_state {full_context} TTL:604800" (1 week)
   After restart: "G session_state" → resume from checkpoint
   ```

4. **Audit Trail:**
   ```
   Store each decision: "P milestone_v1 Completed TTL:2592000" (30 days)
   Track progress: "L META" → see timestamp and TTL of each milestone
   ```

**Best Practices:**

1. **Use TTL wisely**: Temporary data (hours), permanent decisions (None)
2. **Clear old memories**: Call `C` or `D` to free space
3. **Descriptive keys**: Use clear, hierarchical names like `decision_inference_v2`
4. **Batch operations**: Use `L META` to understand stored state before updates
5. **Monitor expiration**: Check metadata to prevent unexpected data loss

**Multi-Agent Memory Sharing:**

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::council::{Agent, Council, CouncilMode};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory (all agents access same instance)
    let shared_memory = Arc::new(Memory::new());

    let protocol = Arc::new(MemoryProtocol::new(shared_memory));
    let registry = Arc::new(ToolRegistry::new(protocol));

    // Create council of agents
    let agent1 = Agent::new(...)
        .with_tools(registry.clone());

    let agent2 = Agent::new(...)
        .with_tools(registry.clone());

    // Both agents access same memory
    let mut council = Council::new("research", "Collaborative Research");
    council.add_agent(agent1)?;
    council.add_agent(agent2)?;

    // Agents can:
    // 1. Coordinate: Agent A stores findings, Agent B retrieves
    // 2. Consensus: Store decisions that others can see
    // 3. Progress: Track overall research advancement

    Ok(())
}
```

For comprehensive documentation and patterns, see [`Memory` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.Memory.html).

#### HTTP Client Tool

A secure REST API client for calling external services with domain allowlist/blocklist protection. Perfect for agents that need to make HTTP requests to external APIs.

**Features:**
- All HTTP methods (GET, POST, PUT, DELETE, PATCH, HEAD)
- Domain security with allowlist/blocklist (blocklist takes precedence)
- Basic authentication and bearer token support
- Custom headers and query parameters with automatic URL encoding
- JSON response parsing
- Configurable request timeout and response size limits
- Thread-safe with connection pooling
- Builder pattern for chainable configuration

**Usage Example:**

```rust,no_run
use cloudllm::tools::HttpClient;
use std::time::Duration;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = HttpClient::new();

    // Security: only allow api.example.com
    client.allow_domain("api.example.com");

    // Configuration via builder pattern
    client
        .with_header("Authorization", "Bearer token123")
        .with_query_param("format", "json")
        .with_timeout(Duration::from_secs(30));

    // Make request
    let response = client.get("https://api.example.com/data").await?;

    // Check status and parse JSON
    if response.is_success() {
        let json_data = response.json()?;
        println!("Data: {}", json_data);
    }

    Ok(())
}
```

**Security Features:**

- **Allowlist**: Restrict requests to trusted domains only
- **Blocklist**: Explicitly block malicious domains
- **Precedence**: Blocklist always takes precedence over allowlist
- **No allowlist = All allowed**: Empty allowlist means any domain is allowed (unless in blocklist)

**More Examples:**
- Basic auth: `client.with_basic_auth("username", "password")`
- Custom header: `client.with_header("X-API-Key", "secret123")`
- Query params: `client.with_query_param("page", "1").with_query_param("limit", "50")`
- Size limit: `client.with_max_response_size(50 * 1024 * 1024)` (50MB)
- Short timeout: `client.with_timeout(Duration::from_secs(5))`

For comprehensive documentation and more examples, see [`HttpClient` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.HttpClient.html) and run `cargo run --example http_client_example`.

##### Using HTTP Client Tool with Agents

The HTTP Client tool can be exposed to agents through the MCP protocol, allowing agents to make API calls autonomously. Here's how to set it up:

**Step 1: Create an MCP HTTP Server (expose via HTTP)**

Create an HTTP server that exposes the HTTP Client tool via MCP protocol. This server can be accessed by agents over the network:

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::HttpClient;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolParameter, ToolParameterType, ToolResult, ToolRegistry};
use serde_json::json;
use axum::{
    extract::Json,
    routing::post,
    Router,
};
use std::net::SocketAddr;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create HTTP client with security settings
    let mut http_client = HttpClient::new();

    // Configure security: only allow specific domains
    http_client.allow_domain("api.github.com");
    http_client.allow_domain("api.example.com");
    http_client.allow_domain("jsonplaceholder.typicode.com");

    let http_client = Arc::new(http_client);

    // Wrap it with CustomToolProtocol for tool management
    let mut protocol = CustomToolProtocol::new();

    // Register HTTP GET tool
    let client = http_client.clone();
    protocol.register_async_tool(
        ToolMetadata::new("http_get", "Make an HTTP GET request to an API")
            .with_parameter(
                ToolParameter::new("url", ToolParameterType::String)
                    .with_description("The URL to fetch (must be from allowed domains)")
                    .required()
            )
            .with_parameter(
                ToolParameter::new("headers", ToolParameterType::Object)
                    .with_description("Optional custom headers as JSON object")
            ),
        Arc::new(move |params| {
            let client = client.clone();
            Box::pin(async move {
                let url = params["url"].as_str().ok_or("url parameter required")?;

                match client.get(url).await {
                    Ok(response) => {
                        if response.is_success() {
                            // Try to parse as JSON
                            match response.json() {
                                Ok(json_data) => {
                                    Ok(ToolResult::success(json!({
                                        "status": response.status,
                                        "data": json_data
                                    })))
                                }
                                Err(_) => {
                                    Ok(ToolResult::success(json!({
                                        "status": response.status,
                                        "body": response.body
                                    })))
                                }
                            }
                        } else {
                            Ok(ToolResult::error(
                                format!("HTTP {}: {}", response.status, response.body)
                            ))
                        }
                    }
                    Err(e) => Ok(ToolResult::error(e.to_string()))
                }
            })
        })
    ).await;

    // Register HTTP POST tool
    let client = http_client.clone();
    protocol.register_async_tool(
        ToolMetadata::new("http_post", "Post JSON data to an API")
            .with_parameter(
                ToolParameter::new("url", ToolParameterType::String)
                    .with_description("The URL to POST to (must be from allowed domains)")
                    .required()
            )
            .with_parameter(
                ToolParameter::new("data", ToolParameterType::Object)
                    .with_description("JSON data to send")
                    .required()
            ),
        Arc::new(move |params| {
            let client = client.clone();
            Box::pin(async move {
                let url = params["url"].as_str().ok_or("url parameter required")?;
                let data = params["data"].clone();

                match client.post(url, data).await {
                    Ok(response) => {
                        if response.is_success() {
                            Ok(ToolResult::success(json!({
                                "status": response.status,
                                "message": "Data posted successfully"
                            })))
                        } else {
                            Ok(ToolResult::error(
                                format!("HTTP {}: {}", response.status, response.body)
                            ))
                        }
                    }
                    Err(e) => Ok(ToolResult::error(e.to_string()))
                }
            })
        })
    ).await;

    // Create tool registry
    let registry = Arc::new(ToolRegistry::new(Arc::new(protocol)));

    // Create HTTP server endpoints
    let registry_list = registry.clone();
    let registry_exec = registry.clone();

    let app = Router::new()
        // MCP standard: list available tools
        .route("/tools/list", post(move || {
            let reg = registry_list.clone();
            async move {
                let tools = reg.list_tools().await.unwrap_or_default();
                Json(json!({
                    "tools": tools
                }))
            }
        }))
        // MCP standard: execute a tool
        .route("/tools/execute", post(move |Json(payload): Json<serde_json::Value>| {
            let reg = registry_exec.clone();
            async move {
                let tool_name = payload["tool"].as_str().unwrap_or("");
                let params = payload["params"].clone();

                match reg.execute_tool(tool_name, params).await {
                    Ok(result) => Json(json!({"result": result})),
                    Err(e) => Json(json!({"error": e.to_string()}))
                }
            }
        }));

    // Start server
    let addr = SocketAddr::from(([127, 0, 0, 1], 8080));
    println!("🚀 MCP HTTP Server running on http://{}", addr);
    println!("📋 List tools: POST http://{}/tools/list", addr);
    println!("🔧 Execute tool: POST http://{}/tools/execute", addr);
    println!("✓ Allowed domains: api.github.com, api.example.com, jsonplaceholder.typicode.com");

    axum::Server::bind(&addr)
        .serve(app.into_make_service())
        .await?;

    Ok(())
}
```

**Add to Cargo.toml:**
```toml
axum = "0.7"
```

**Usage:**

Once running, other services/agents can call this MCP server:

```bash
# List available tools
curl -X POST http://localhost:8080/tools/list

# Use http_get tool
curl -X POST http://localhost:8080/tools/execute \
  -H "Content-Type: application/json" \
  -d '{
    "tool": "http_get",
    "params": {
      "url": "https://api.github.com/repos/CloudLLM-ai/cloudllm"
    }
  }'
```

This MCP server can now be referenced by agents using `McpClientProtocol::new("http://localhost:8080")`, allowing them to access HTTP capabilities securely and with domain restrictions.
```

**Step 2: Create an Agent that Uses HTTP Client Tools**

```rust,no_run
use std::sync::Arc;
use cloudllm::council::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolParameter, ToolParameterType, ToolResult};
use cloudllm::tools::HttpClient;
use serde_json::json;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create HTTP client with security settings
    let mut http_client = HttpClient::new();

    // Configure security: only allow trusted domains
    http_client.allow_domain("api.github.com");
    http_client.allow_domain("api.example.com");

    // Configure authentication
    http_client.with_header("User-Agent", "CloudLLM-Agent/1.0");

    let http_client = Arc::new(http_client);

    // Wrap with CustomToolProtocol to expose to agents
    let mut protocol = CustomToolProtocol::new();

    // Register HTTP GET tool using the actual HttpClient
    let client = http_client.clone();
    protocol.register_async_tool(
        ToolMetadata::new("get_json_api", "Fetch JSON data from an API endpoint")
            .with_parameter(
                ToolParameter::new("url", ToolParameterType::String)
                    .with_description("The URL to fetch (must be from allowed domains)")
                    .required()
            )
            .with_parameter(
                ToolParameter::new("headers", ToolParameterType::Object)
                    .with_description("Optional custom headers")
            ),
        Arc::new(move |params| {
            let client = client.clone();
            Box::pin(async move {
                let url = params["url"]
                    .as_str()
                    .ok_or("url parameter is required")?;

                // Use the actual HttpClient to make the request
                match client.get(url).await {
                    Ok(response) => {
                        if response.is_success() {
                            // Try to parse as JSON
                            match response.json() {
                                Ok(json_data) => {
                                    Ok(ToolResult::success(json!({
                                        "status": response.status,
                                        "data": json_data
                                    })))
                                }
                                Err(_) => {
                                    // Not JSON, return raw body
                                    Ok(ToolResult::success(json!({
                                        "status": response.status,
                                        "body": response.body
                                    })))
                                }
                            }
                        } else {
                            Ok(ToolResult::error(format!(
                                "HTTP {} error: {}",
                                response.status, response.body
                            )))
                        }
                    }
                    Err(e) => Ok(ToolResult::error(format!(
                        "Request failed: {}",
                        e
                    )))
                }
            })
        })
    ).await;

    // Register HTTP POST tool for sending data
    let client = http_client.clone();
    protocol.register_async_tool(
        ToolMetadata::new("post_json_api", "Post JSON data to an API endpoint")
            .with_parameter(
                ToolParameter::new("url", ToolParameterType::String)
                    .with_description("The URL to POST to (must be from allowed domains)")
                    .required()
            )
            .with_parameter(
                ToolParameter::new("data", ToolParameterType::Object)
                    .with_description("JSON data to send")
                    .required()
            ),
        Arc::new(move |params| {
            let client = client.clone();
            Box::pin(async move {
                let url = params["url"]
                    .as_str()
                    .ok_or("url parameter is required")?;

                let data = params["data"].clone();

                // Use the actual HttpClient to POST
                match client.post(url, data).await {
                    Ok(response) => {
                        if response.is_success() {
                            Ok(ToolResult::success(json!({
                                "status": response.status,
                                "message": "Data posted successfully"
                            })))
                        } else {
                            Ok(ToolResult::error(format!(
                                "HTTP {} error: {}",
                                response.status, response.body
                            )))
                        }
                    }
                    Err(e) => Ok(ToolResult::error(format!(
                        "Request failed: {}",
                        e
                    )))
                }
            })
        })
    ).await;

    // Create tool registry
    let registry = Arc::new(ToolRegistry::new(Arc::new(protocol)));

    // Create agent with HTTP access
    let mut agent = Agent::new(
        "api-agent",
        "API Integration Agent",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_expertise("Makes HTTP requests to external APIs")
    .with_tools(registry);

    // Agent can now make authenticated, secure API calls!
    println!("✓ Agent configured with HTTP tools");
    println!("✓ Allowed domains: api.github.com, api.example.com");
    println!("✓ Agent can now GET and POST to these APIs");
    Ok(())
}
```

**Step 3: Configure Agent System Prompt for HTTP Usage**

Teach the agent about available HTTP tools via the system prompt:

```
You have access to HTTP tools for making API calls:

1. get_json_api(url: string, headers?: object)
   - Fetches JSON data from an API endpoint
   - Returns: {status: number, body: string}
   - Security: Only allowed domains are accessible
   - Use this to fetch real-time data from external services

2. post_json_api(url: string, data: object, headers?: object)
   - Posts JSON data to an API endpoint
   - Use this to submit data to external services

Always check the response status before processing the body.
When calling APIs, include appropriate headers like Content-Type.
Never share authentication tokens in logs.
```

**Step 4: Multi-MCP Setup (Advanced)**

Combine HTTP Client with other tools via multiple MCP servers:

```rust,no_run
use std::sync::Arc;
use cloudllm::council::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::tool_protocols::CustomToolProtocol;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create empty registry for multiple protocols
    let mut registry = ToolRegistry::empty();

    // Add HTTP tools locally
    let http_protocol = Arc::new(CustomToolProtocol::new());
    registry.add_protocol("http", http_protocol).await?;

    // Add memory tools locally
    let memory_protocol = Arc::new(CustomToolProtocol::new());
    registry.add_protocol("memory", memory_protocol).await?;

    // Connect to remote MCP servers
    use cloudllm::tool_protocols::McpClientProtocol;

    let github_mcp = Arc::new(McpClientProtocol::new(
        "http://localhost:8081".to_string()
    ));
    registry.add_protocol("github", github_mcp).await?;

    // Create agent with access to all tools
    let mut agent = Agent::new(
        "orchestrator",
        "Multi-Tool Orchestrator",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_tools(Arc::new(registry));

    println!("Agent can now:");
    println!("  - Make HTTP API calls (http_*)");
    println!("  - Store/retrieve data in memory (memory_*)");
    println!("  - Interact with GitHub (github_*)");

    Ok(())
}
```

**Security Best Practices:**

1. **Domain Allowlist**: Configure HTTP clients with domain allowlists to prevent unauthorized requests
   ```rust
   let mut client = HttpClient::new();
   client.allow_domain("api.trusted-service.com");
   client.allow_domain("public-api.example.com");
   ```

2. **Deny Malicious Domains**: Use blocklists as a second layer
   ```rust
   client.deny_domain("malicious.attacker.com");
   ```

3. **Timeout Protection**: Set reasonable timeouts to prevent hanging requests
   ```rust
   use std::time::Duration;
   client.with_timeout(Duration::from_secs(30));
   ```

4. **Size Limits**: Limit response sizes to prevent memory exhaustion
   ```rust
   client.with_max_response_size(10 * 1024 * 1024); // 10MB
   ```

5. **Authentication**: Use appropriate auth methods when needed
   ```rust
   client.with_basic_auth("username", "password");
   // or
   client.with_header("Authorization", "Bearer your-token");
   ```

#### Bash Tool

Secure command execution on Linux and macOS with timeout and security controls. See [`BashTool` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.BashTool.html).

#### File System Tool

Safe file and directory operations with path traversal protection and optional extension filtering. Perfect for agents that need to read, write, and manage files within designated directories.

**Key Features:**
- Read, write, append, and delete files
- Directory creation, listing, and recursive deletion
- File metadata retrieval (size, modification time, is_directory)
- File search with pattern matching
- Path traversal prevention (`../../../etc/passwd` is blocked)
- Optional file extension filtering for security
- Root path restriction for sandboxing

**Basic Usage:**

```rust,no_run
use cloudllm::tools::FileSystemTool;
use std::path::PathBuf;

// Create tool with root path restriction
let fs = FileSystemTool::new()
    .with_root_path(PathBuf::from("/home/user/documents"))
    .with_allowed_extensions(vec!["txt".to_string(), "md".to_string()]);

// Write a file
fs.write_file("notes.txt", "Important information").await?;

// Read a file
let content = fs.read_file("notes.txt").await?;

// List directory contents
let entries = fs.read_directory(".", false).await?;
for entry in entries {
    println!("{}: {} bytes", entry.name, entry.size);
}

// Get metadata
let metadata = fs.get_file_metadata("notes.txt").await?;
println!("Size: {} bytes, Modified: {}", metadata.size, metadata.modified);
```

**Security:**
- All paths are normalized to prevent traversal attacks
- Root path restriction ensures operations stay within designated directory
- Extension filtering can prevent execution of dangerous file types
- Works safely with untrusted input

For comprehensive documentation and examples, see the [`FileSystemTool` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.FileSystemTool.html) and `examples/filesystem_example.rs`.

### Creating Custom Protocol Adapters

Implement the [`ToolProtocol`](https://docs.rs/cloudllm/latest/cloudllm/tool_protocol/trait.ToolProtocol.html) trait to support new protocols:

```rust,no_run
use async_trait::async_trait;
use cloudllm::tool_protocol::{ToolMetadata, ToolProtocol, ToolResult};
use std::error::Error;

/// Example: Custom protocol adapter for a hypothetical service
pub struct MyCustomAdapter {
    // Your implementation
}

#[async_trait]
impl ToolProtocol for MyCustomAdapter {
    async fn execute(
        &self,
        tool_name: &str,
        parameters: serde_json::Value,
    ) -> Result<ToolResult, Box<dyn Error + Send + Sync>> {
        // Implement tool execution logic
        Ok(ToolResult::success(serde_json::json!({})))
    }

    async fn list_tools(&self) -> Result<Vec<ToolMetadata>, Box<dyn Error + Send + Sync>> {
        // Return available tools
        Ok(vec![])
    }

    async fn get_tool_metadata(
        &self,
        tool_name: &str,
    ) -> Result<ToolMetadata, Box<dyn Error + Send + Sync>> {
        // Return specific tool metadata
        Ok(ToolMetadata::new(tool_name, "Tool description"))
    }

    fn protocol_name(&self) -> &str {
        "my-custom-protocol"
    }
}
```

### Using Tools in Agent System Prompts

Teach agents about available tools via the system prompt:

```
You have access to the following tools:

1. Calculator (add, subtract, multiply)
   - Use for mathematical operations
   - Respond with: {"tool_call": {"name": "add", "parameters": {"a": 5, "b": 3}}}

2. Memory System
   - Store important information
   - Use command: P key value ttl
   - Retrieve with: G key META

Always use tools when they can help answer the user's question. After using a tool,
incorporate the result into your response.
```

### Best Practices for Tools

1. **Clear Names & Descriptions**: Make tool purposes obvious to LLMs
2. **Comprehensive Parameters**: Document all required and optional parameters
3. **Error Handling**: Return meaningful error messages in ToolResult
4. **Atomicity**: Each tool should do one thing well
5. **Documentation**: Include examples in tool descriptions
6. **Testing**: Test tool execution in isolation before integration

For more examples, see the `examples/` directory and run `cargo doc --open` for complete API documentation.

---

## Councils: multi-agent orchestration

The `council` module orchestrates conversations between agents built on any `ClientWrapper`.
Choose from parallel, round-robin, moderated, hierarchical, or debate modes.

```rust,no_run
use std::sync::Arc;

use cloudllm::council::{Agent, Council, CouncilMode};
use cloudllm::clients::openai::{Model, OpenAIClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let key = std::env::var("OPEN_AI_SECRET")?;

    let architect = Agent::new(
        "architect",
        "System Architect",
        Arc::new(OpenAIClient::new_with_model_enum(&key, Model::GPT4o)),
    )
    .with_expertise("Distributed systems")
    .with_personality("Pragmatic, direct");

    let tester = Agent::new(
        "qa",
        "QA Lead",
        Arc::new(OpenAIClient::new_with_model_enum(&key, Model::GPT41Mini)),
    )
    .with_expertise("Test automation")
    .with_personality("Sceptical, detail-oriented");

    let mut council = Council::new("design-review", "Deployment Review")
        .with_mode(CouncilMode::RoundRobin)
        .with_system_context("Collaboratively review the proposed architecture.");

    council.add_agent(architect)?;
    council.add_agent(tester)?;

    let outcome = council
        .discuss("Evaluate whether the blue/green rollout plan is sufficient.", 2)
        .await?;

    for msg in outcome.messages {
        if let Some(name) = msg.agent_name {
            println!("{name}: {}", msg.content);
        }
    }

    Ok(())
}
```

For a deep dive, read [`COUNCIL_TUTORIAL.md`](./COUNCIL_TUTORIAL.md) which walks through each
collaboration mode with progressively sophisticated examples.

---

## Examples

Clone the repository and run the provided examples:

```bash
export OPEN_AI_SECRET=...
export ANTHROPIC_KEY=...
export GEMINI_KEY=...
export XAI_KEY=...

cargo run --example interactive_session
cargo run --example streaming_session
cargo run --example council_demo
```

Each example corresponds to a module in the documentation so you can cross-reference the code with
explanations.

---

## Support & contributing

Issues and pull requests are welcome via [GitHub](https://github.com/CloudLLM-ai/cloudllm).
Please open focused pull requests against `main` and include tests or doc updates where relevant.

CloudLLM is released under the [MIT License](./LICENSE).

---

Happy orchestration! 🤖🤝🤖